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A Deficiency in Drak2 Results
in a T Cell Hypersensitivity
and an Unexpected Resistance to Autoimmunity

ease. Examples include phosphatases such as SHP-1,
PEP, PTP-Pest, CD45, SHIP-1, and PTEN; the E3 ubiqui-
tin ligases Cbl-b, c-Cbl, Itch, and GRAIL; inhibitory cell
surface receptors CTLA-4 and PD-1; and transcription
factors Foxj1, Foxp3, and LKLF (Anandasabapathy et
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T cell apoptosis is another critical component of toler-Summary
ance and plays an essential role at two stages in the
natural life of a T cell. Developing thymocytes are in-DRAK2 is a member of the death-associated protein
duced to die as a consequence of high reactivity for(DAP)-like family of serine/threonine kinases. Mem-
self-MHC and peptide complexes, thus reducing thebers of this family induce apoptosis in various cell
number of potentially autoreactive T cells that progresstypes. DRAK2, in particular, is specifically expressed
through development. Apoptosis is also an essentialin T cells and B cells, and it is differentially regulated
feature of the waning phase of the immune response toduring T cell development. To determine whether
an infectious agent.DRAK2 regulates lymphocyte apoptosis, we produced

The signal transduction events leading to apoptosisDrak2�/� mice. Contrary to our expectations, Drak2�/�

are well studied and, unlike most other pathways, rarelyT cells did not demonstrate any defects in apoptosis
involve protein phosphorylation. An exception may beor negative selection; however, T cells from Drak2�/�

apoptosis promoted by the DAP-like family of kinases.mice exhibited enhanced sensitivity to T cell receptor-
Members of this family include DAP kinase, DRP-1, ZIPmediated stimulation with a reduced requirement for
kinase, DRAK1, and DRAK2 (Kogel et al., 2001). Thesecostimulation. These results provide evidence that
serine/threonine kinases share homology within theirDRAK2 raises the threshold for T cell activation by
N-terminal kinase domains but vary extensively in theirnegatively regulating signals through the TCR. In con-
C-terminal domains. All members of this family inducedtrast to other models of T cell hypersensitivity, Drak2�/�

apoptosis after ectopic expression in cell lines (Cohenmice were remarkably resistant to experimental auto-
et al., 1997; Kawai et al., 1999; Sanjo et al., 1998).immune encephalomyelitis (EAE). These results ex-
DAP kinase-related apoptosis-inducing protein kinasepose a new pathway regulating T cell activation and
1 (DRAK1) and DRAK2 were identified by EST homologyhighlight the intricacies of induced autoimmune
searches for genes containing kinase domains similar todisease.
DAP kinase. In addition to its putative role in apoptosis,
DRAK is of particular interest because it is expressed

Introduction most abundantly in lymphoid organs. In fact, an analysis
of gene expression patterns in 46 different human tis-

The acquired immune system of vertebrates evolved in sues revealed that DRAK (also referred to as STK17) is
response to relentless pressure applied by coevolving one of only 31 genes expressed exclusively in lymphoid
infectious agents (Hedrick, 2004). It is unique in exhib- tissue (Su et al., 2002).
iting unlimited potential for molecular recognition as well Given that apoptosis is so critical for maintaining a
as a diverse means for inducing cellular destruction. In well-regulated immune system and that members of the
fact, it is the only physiological system in animals capa- DAP-like kinase family induce apoptosis, we investi-
ble of actively executing the loss of organismal integrity. gated the role of DRAK2 in lymphoid cells. In extensive
Consequently, numerous mechanisms have evolved studies of Drak2�/� mice, we found no evidence for an
that regulate the activation of an immune response and alteration in the sensitivity of thymocytes or mature
limit its extent and duration. This is particularly important T cells to apoptosis. Instead, we found that T cells defi-
at the level of T cell activation. Regulatory molecules cient in Drak2 exhibited increased sensitivity to TCR
expressed in T cells participate in maintaining cellular signals with a reduced requirement for costimulation.
quiescence, setting the threshold for activation and lim- From these studies we conclude that DRAK2 functions
iting the magnitude of a response through negative feed- as yet another negative regulator of T cell activation.
back control (Veillette et al., 2002). Defects in these Surprisingly, despite this T cell hypersensitivity, Drak2�/�

molecules result in T cell hypersensitivity and often con- mice were highly resistant to EAE, an unexpected result
tribute to an increased propensity for autoimmune dis- in light of other models of T cell hypersensitivity.
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Figure 1. Analysis of DRAK2 Expression

(A) Expression profile of Drak2 mRNA in mouse tissue. Each bar represents the normalized intensity of the amount of Drak2 transcript in
each tissue.
(B) The various subsets of cells were purified from thymus, spleen, and lymph nodes and analyzed by Western blot for DRAK2 expression.
All subsets were greater than 94% pure. For a loading control, the blots were stripped and then blotted with an anti-actin antibody. These
data are representative of two separate sorts.

(Su et al., 2002) for Drak2 expression in mouse tissues passing the intron 2/exon 3 junction and most of exon
3 (which contains the lysine residue required for ATP bind-demonstrated that like the pattern in human tissues,

Drak2 mRNA expression is highest in lymphoid organs ing) with a neomycin resistance cassette (Supplemental
Figure S1A available online at http://www.immunity.com/(Figure 1A). To confirm that DRAK2 protein retained the

same expression pattern as Drak2 mRNA and to further cgi/content/full/21/6/781/DC1/). Drak2�/� mice were re-
covered at the expected Mendelian frequencies and dididentify the subsets of cells within the lymphoid tissue

that expressed DRAK2, we examined expression of not exhibit any gross abnormalities when compared to
littermate controls.DRAK2 protein by Western blot. In the thymus, DRAK2

expression is low during the double negative (DN) stage, Given the reported ability of DRAK2 to induce apopto-
then is increased during the double positive (DP) stage, sis after ectopic expression in cell lines (Matsumoto et
and continues to increase in the single positive (SP) al., 2001; Sanjo et al., 1998), we tested whether negative
stage (Figure 1B). In peripheral lymphoid tissues, DRAK2 selection in Drak2�/� mice was altered in two in vivo
expression is highest in B cells but is also expressed at models. First, Drak2�/� mice were crossed to H-Y TCR
high levels in both CD4� and CD8� T cells. DRAK2 is transgenic mice. This TCR is specific for a peptide from
not expressed at significant levels in NK cells, macro- the male antigen bound to H-2Db, and T cells expressing
phages, or dendritic cells. Due to the lymphoid-specific this receptor are deleted before the DP stage of develop-
nature of DRAK2 and the ability of its family members ment in male mice (Kisielow et al., 1988). Second, the
to induce apoptosis, we examined the function of role of DRAK2 was evaluated in late-stage negative se-
DRAK2 by generating Drak2�/� mice. We note that analy- lection in AND TCR transgenic mice that expressed
sis of the mouse genome revealed that there is no mouse H-2b/s (Page et al., 1998). In this model of negative selec-
homolog to human DRAK1. tion, thymocytes are deleted after the DP stage, but

before the CD4�CD8� (CD4SP) stage. A deficiency in
Drak2 did not affect the loss of self-reactive T cells inNo Defect in Negative Selection or Apoptosis
either model (data not shown). In addition, the role ofin Drak2�/� T Cells
DRAK2 in thymocyte apoptosis was tested in vitro withDrak2-deficient mice were generated by homologous
several apoptosis-inducing agents. Surprisingly, thererecombination in 129SVJ embryonic stem cells targeted

with a construct that replaced a 400 bp fragment encom- were no significant differences in thymocyte apoptosis
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induced by anti-CD3, peptide-pulsed antigen-present-
ing cells (APC), anti-Fas, dexamethasone, staurosporine,
etoposide, or �-irradiation (Supplemental Figure S2 and
data not shown). Together, these data suggest that
DRAK2 does not play an essential role in induction of
thymocyte apoptosis or negative selection.

Enhanced Positive Selection
in the Absence of DRAK2
Although there was no defect in thymocyte negative
selection or differences in total thymic cellularity,
Drak2�/� thymuses had a slight, yet statistically signifi-
cant, increase in the percent of CD4SP thymocytes com-
pared to wild-type (wt) mice (Supplemental Figure S3A).
This increase coincided with a concomitant decrease
in the percent of DP thymocytes and was enhanced
when Drak2�/� mice were bred to mice expressing MHC
class II-restricted TCR transgenes, either OT-II or AND
(Supplemental Figure S3A and data not shown). How-
ever, there was no effect on subset distribution when
Drak2�/� mice were bred to OT-I or P14 mice, MHC class
I-restricted TCR transgenic mice (Supplemental Figure
S3A). Thus, the absence of Drak2 enhanced develop-
ment of CD4� thymocytes but had little effect on CD8�

thymocytes. In addition, the levels of CD5 and CD69
were slightly increased on OT-II;Drak2�/� and OT-I;
Drak2�/� DP thymocytes compared to wt DP thymocytes
(Supplemental Figure S3B). This increase in CD5 and
CD69 expression in the absence of Drak2 suggests that
the intensity of the signal through the TCR was enhanced
in Drak2�/� thymocytes. We conclude that DRAK2 nega-
tively regulates signals initiated through the TCR.

An Increase in Memory-like Cells
in the Absence of DRAK2
An analysis of the lymphocytes present in the spleens Figure 2. Increased Sensitivity of Drak2�/� T Cells to Suboptimal
of Drak2-deficient mice revealed an increase in the num- Stimuli
ber of cells with characteristics of memory T cells. The (A) OT-I;Drak2�/�, Drak2�/�, and Drak2�/� splenocytes were labeled
percent of CD62Llo cells was consistently increased, but with CFSE and incubated with various amounts of the strong agonist

peptide, OVAp, or the weak agonist, G4. After 2 days, the numberthe difference in other memory markers, such as CD44
of CFSElo, CD8� T cells was determined by flow cytometry. Theseand CD45RB was more variable (Supplemental Figure
data are representative of three separate experiments.S4A). There was no difference between Drak2�/� and wt
(B) T cells were purified by negative depletion from the spleen of

T cells in the expression of transient markers of activa- Drak2�/� (solid lines) and Drak2�/� (dashed lines) littermates (N3 to
tion such as CD69, CD25, or LY6C (Supplemental Figure C57BL/6), labeled with CFSE, and stimulated with plate bound anti-
S4B). The percent of CD62Llo cells was the largest and CD3. The numbers represent the percent of cells that have divided

at least once. The percentage for Drak2�/� is shown above the linemost consistent difference between wt and Drak2�/�

and the percentage for Drak2�/� is below the line.T cells, whereas this increase was not observed in
(C) Lymph node T cells from wt, Drak2�/�, and Cbl-b�/� mice (�N6Drak2�/� mice expressing the OT-I or OT-II TCR trans-
to C57BL/6) were purified by negative depletion and subsequently

genes (data not shown). This suggests that DRAK2 does separated with CD62L magnetic beads. The CD62L� fraction was
not directly affect CD62L expression and that the ap- CFSE labeled and stimulated with plate bound anti-CD3. The cells
pearance of these cells may arise as a result of an en- were greater than 95% Thy1�, CD62L�. The data are representative

of three experiments.counter with environmental or self-antigens. This further
suggests that in the absence of Drak2, the T cells re-
sponded to antigens that are otherwise ignored by the
immune system. G4 peptide varies from the agonist peptide by one amino

acid residue but has a 8-fold reduced affinity for the
OT-I TCR and therefore induces a weak T cell responseHyperproliferation of Drak2�/� T Cells to Suboptimal

Antigen Stimulation (Rosette et al., 2001). Consistent with a deficiency in a
negative regulator, Drak2�/� T cells proliferated more inIf DRAK2 acts as a negative regulator of T cell signaling,

then one would predict that Drak2�/� T cells would be response to antigenic stimulation, and this difference
was greater in response to the weak agonist (Figure 2A).hypersensitive to antigenic stimulation. To test this, we

stimulated OT-I;Drak2�/� T cells in vitro with the agonist The observed phenotype may be the result of hyper-
sensitive T cells; however, it may also be caused by thepeptide OVAp or an altered form of this peptide G4. The
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APC because DRAK2 is also expressed in B cells (Figure costimulatory molecules, and TNFR family members
were equivalent between Drak2�/� and wt T cells (Figure1B). To determine whether the effect of Drak2 ablation

was T cell autonomous, the APC were exhaustively de- 3C). However, after suboptimal stimulation with anti-
CD3, the levels of various costimulatory markers variedpleted by magnetic sorting, and the purified T cells were

stimulated in vitro with anti-CD3 alone. Wt T cells were between wt and Drak2�/� T cells. The greatest difference
was in the level of CD25 (Figure 3C). The increasedcompletely unresponsive to low doses of plate bound

anti-CD3, while Drak2�/� T cells exhibited a robust prolif- expression of CD25 was highest at 24 hr and maintained
for at least 72 hr after stimulation (Figure 3C). Likewise,erative response even in the absence of any source of

costimulation (Figure 2B). Addition of anti-CD28 anti- the expression levels of other costimulators including
IL-7R, ICOS, CD27, OX40, and 41BB were also increasedbody evoked a response in Drak2�/� and Drak2�/� T cells

that was virtually indistinguishable (Figure 2B). These on Drak2�/� T cells in response to suboptimal stimulation
(Figure 3C). Consistent with previous experiments, thedata demonstrate that in the absence of Drak2, T cells

responded to suboptimal stimulation that did not evoke levels of these costimulatory molecules were similar be-
tween wt and Drak2�/� T cells when stimulated by anti-a response in wt T cells, and this effect was independent

of the APC population. CD3 and anti-CD28. Although several positive costimu-
latory molecules increased in the absence of Drak2,Given the fact that there were more CD62Llo cells in

the spleen of Drak2�/� mice, it was possible that the there were also increases in two negative regulators,
PD-1 and CTLA-4. These results exemplify the robusthypersensitivity of Drak2�/� T cells was a consequence

of an increase in the number of CD62Llo cells. To address regulation of the immune response whereby enhanced
stimulation is self-limiting.this possibility, the CD62Llo cells were removed from the

purified T cells by magnetic sorting, and the remaining
T cells were stimulated in vitro with anti-CD3. Even in the No Defect in Peripheral T Cell AICD and an Increased
absence of CD62Llo cells, Drak2�/� T cells proliferated to Sensitivity to Costimulation
doses of anti-CD3 that did not induce proliferation of As T cells are stimulated and respond to cytokines, there
wt T cells, and again both proliferated equally well when is ongoing cell death. Although there was no defect in
costimulation was present (Figure 2C). apoptosis of thymocytes, we considered the possibility

Because DRAK2 functions as a negative regulator of that the hyperproliferative phenotype of Drak2�/� periph-
T cell activation, we compared the response of Drak2�/� eral T cells resulted from diminished cell death after
T cells to T cells lacking another regulatory molecule, activation. In order to analyze the level of apoptosis
Cbl-b. Cbl-b reduces the amount of signaling through associated with T cell activation, purified T cells were
the TCR, and in its absence, T cells are hypersensitive labeled with CFSE, stimulated with anti-CD3, and
to antigenic stimulation (Bachmaier et al., 2000; Chiang stained with Annexin V to detect the percentage of apo-
et al., 2000; Naramura et al., 2002). As shown previously, ptotic cells at each round of cell division. T cells from wt
Cbl-b�/� T cells were hypersensitive to suboptimal doses mice did not undergo proliferation without costimulation
of anti-CD3 similar to Drak2�/� T cells (Figure 2C). How- (Figure 4A), and two effects became apparent as anti-
ever, the sensitivity of the Cbl-b�/� T cells was greater CD28 was titrated into culture. At low concentrations of
than that of the Drak2�/� T cells, suggesting that DRAK2 anti-CD28, a large proportion of the wt T cells pro-
and Cbl-b may inhibit separate signaling pathways. gressed through the cell cycle, but a large percentage

of those cells died at each round of division. As costim-
ulation was increased, the same proportion of cells pro-Drak2�/� T Cells Produce More Cytokines

and Express Higher Levels of Activation-Induced liferated, but the apoptosis was dramatically reduced.
This illustrates the two activities mediated by costimula-Costimulatory Molecules

In order to understand the mechanism in which DRAK2 tion, proliferation associated with cytokine production
and survival. The question was whether Drak2�/� T cellsregulates T cell activation, we examined other conse-

quences of TCR stimulation such as cytokine production would divide without the concomitant cell death.
Drak2�/� T cells were capable of dividing in response toand expression of activation-induced molecules. First,

we measured the amount of IL-2 produced by naive anti-CD3 stimulation with minimal anti-CD28 antibody,
but the Drak2�/� cells still exhibited a proportional cellT cells in response to anti-CD3 alone. Analogous to the

proliferation results, Drak2�/� T cells produced more IL-2 death (Figure 4A). In fact, the response to anti-CD28
was virtually identical to that elicited in wt cells with thethan wt T cells, but not as much IL-2 as Cbl-b�/� T cells

(Figure 3A). This provides at least one explanation for the exception that the dose response was shifted to lower
concentrations of agonististic anti anti-CD28 antibody.increased sensitivity of Drak2�/� T cells to suboptimal

stimuli. We also measured the amount of IL-4 and IFN� The net recovery of cells from these experiments was
plotted as a function of the time to reflect both prolifera-in unpolarized and Th1/Th2 polarized T cells. Both wt

and Drak2�/� T cells produced the appropriate cytokines tion and apoptosis (Figure 4B). Wt CD8� T cells ex-
panded at low concentrations of anti-CD28, whereas wtunder Th1 and Th2 skewing conditions (Figure 3B). In

addition, under nonskewing conditions, Drak2�/� T cells CD4� T cells required 10- to 100-fold more costimulation
to achieve the same cell production. This was similarproduced more IFN-�, IL4, and IL-2 compared to con-

trols. for Drak2�/� T cells with the exception that both of the
responses required even lower concentrations of anti-In addition to cytokine production, we analyzed the

expression level of various costimulatory molecules on CD28. The loss of Drak2 would therefore not appear to
obviate the need for costimulation, but rather T cells arepurified, naive T cells before and after activation. Prior

to T cell activation, the levels of the cytokine receptors, more sensitive to costimulation as measured by either
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Figure 3. Increased Cytokine Production and Surface Marker Upregulation by Drak2�/� T Cells

(A) A sample of the culture supernatant was removed from each well of the experiment described in Figure 2C after 24 hr of stimulation. The
amount of IL-2 in each sample was measured by ELISA. This experiment is representative of at least three experiments.
(B) Purified CD4� T cells were stimulated with anti-CD3 and anti-CD28 in the presence of Th1, Th2, or nonskewing conditions for 3 days. The
cells were then rested in the presence of IL-2 for 3 days, then restimulated with anti-CD3 in the presence of Brefeldin A for 4 hr and stained
for intracellular cytokine and analyzed by flow cytometry. The data are representative of two separate experiments.
(C) Purified T cells were stimulated with 20 ng of plate bound anti-CD3 or 100 ng of plate bound anti-CD3 with soluble anti-CD28 for either
24 or 72 hr, harvested, and stained with antibodies to the various costimulatory molecules. The filled histograms represent electronically
gated CD4�, Drak2�/� T cells and the open represent CD4�, Drak2�/� T cells. Data are representative of three separate experiments.

proliferation or survival. Together these data demon- that responded to LCMV was not dramatic, which would
be predicted for a response in which costimulation isstrate that the enhanced proliferation exhibited by

Drak2�/� T cells did not arise from a defect in cell death likely to be maximal. In addition to counting the number
of LCMV-specific T cells, we also measured the amountassociated with activation.
of IFN-� in the serum during the response. Interestingly,
the level of IFN-� present in the serum of Drak2�/� miceThe Impact of DRAK2 on an In Vivo
was greater than that of wt mice before the peak of theImmune Response
response and during the contraction phase (Figure 4D).Although there was no defect in apoptosis of Drak2�/�

This is consistent with the fact that Drak2�/� T cells makeT cells in vitro, we wanted to confirm that apoptosis
more IL-2, IL-4, and IFN-� than wt T cells in vitro (Figureafter an in vivo immune response was also intact in
3B), suggesting that Drak2�/� T cells retain some aspectsthe absence of Drak2. Thus, mice were infected with
of hypersensitivity in vivo.lymphocytic choriomeningitis virus (LCMV). At various

days postinfection, the number of CD8� T cells specific
for the gp33 epitope of LCMV and the number of CD4� Subcellular Localization of DRAK2 and Increased

TCR Signaling in Its AbsenceT cells specific for gp61 epitope were calculated. As
shown in Figure 4C, there was a robust response to In order to understand how DRAK2 influences T cell

activation, we looked for differences in signaling mole-LCMV in both wt and Drak2�/� mice. Furthermore, the
absence of Drak2 did not affect the contraction phase cules downstream of TCR activation. To narrow down

the number of possible candidates, we first establishedof the response, supporting the in vitro data measuring
cell death (Figure 4C). To be sure that there was not an whether DRAK2 was localized in the cytoplasm or the

nucleus of naive T cells and if this localization changedalteration in the migration of T cells to nonlymphoid
tissue, we also counted the number of LCMV-specific after activation. Cytoplasmic and nuclear fractions were

prepared from purified, wt T cells that were stimulatedT cells in the lung, and the response in this organ was
similar to that in the spleen (data not shown). The differ- with anti-CD3 and anti-CD28. In naive, unstimulated

T cells, DRAK2 was located in both the cytoplasm andence between the number of wt and Drak2�/� T cells
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Figure 4. Normal Apoptosis in Drak2�/� Peripheral T Cells

(A) Purified T cells were labeled with CFSE and stimulated with plate-bound anti-CD3 in the absence or presence of varying amounts of anti-
CD28. After 4 days, cells were harvested and labeled with antibodies against CD4 and CD8, and stained with Annexin V. Data for CD4� cells
from Drak2�/� and Drak2�/� littermates (N3 to C57BL/6J) are shown. The numbers represent the percentage of cells in each quadrant.
(B) The number of live cells recovered from these cultures is shown in the graphs. The solid lines represent Drak2�/� T cells, and the dashed
lines represent Drak2�/� T cells. The CD4� cells are denoted by the open square (�), and the CD8� by the closed circle (�).
(C) Drak2�/� and Drak2�/� littermates (�N6 to C57BL/6J) were infected with 2 � 105 PFU of LCMV. T cells were isolated from the spleen and
stimulated in vitro for 5 hr in the presence of gp33 or gp61 and Brefeldin A, and stained for intracellular IFN-� to detect LCMV-specific T cells.
The number of CD8�, CD44�, IFN-�� (top) and CD4�, CD44�, IFN-�� (bottom) cells is plotted. Each point is the average of three mice. The
data are representative of four separate infections.
(D) Serum was isolated from the blood of LCMV-infected mice at each time point, and the amount of IFN-� present was measured by ELISA.
These data are representative of three experiments.

nucleus (Figure 5A). Interestingly, 2 min after activation, lators of T cell activation such as Foxj1, Tob, and LKLF
(Kuo et al., 1997; Lin et al., 2004; Tzachanis et al., 2001).the level of DRAK2 in the nucleus decreased and re-

mained low for up to 48 hr (Figure 5A). The level of Next, we tested whether well-characterized signaling
pathways downstream of the TCR were altered in theDRAK2 in the cytoplasm also decreased after activation,

but this was not evident until 24 hr after stimulation absence of Drak2. First, we measured calcium flux in
response to TCR stimulation. In Drak2�/� CD4� T cells,(Figure 5A). At this time, the level of Drak2 mRNA was

also lower than naive T cells (Figure 5B). These experi- the amount of calcium fluxed in response to anti-CD3
stimulation was increased relative to wt T cells (Figurements demonstrate that DRAK2 could interact with both

cytoplasmic and nuclear proteins and that TCR stimula- 5C); however, there was no difference when the T cells
were stimulated with ionomycin, which bypasses thetion directly affects DRAK2 localization. Furthermore,

this expression pattern is similar to other negative regu- signal through the TCR. This provides evidence that the
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absence of Drak2 affects early events in TCR signaling.
To test if other signaling molecules were altered, we
stimulated OT-I;Drak2�/� and Drak2�/� T cells for 5 min
with peptide-pulsed APC. In these experiments, the APC
were pulsed with the agonist peptide OVAp or the sub-
optimal peptide G4. Consistent with an increase in cal-
cium flux, there was also an increase in the phosphoryla-
tion of ERK1/2 and c-Jun in Drak2�/� T cells compared
to wt cells (Figure 5D). Like the proliferation data, the
difference was greater in response to the suboptimal
stimulus. Interestingly, not all TCR signaling pathways
were affected as there was no difference in phosphoryla-
tion of JNK, p38, or I�B-�, a molecule in the NF-�B
pathway. In addition, we did not observe a difference
in the phosphorylation of molecules proximal to the TCR
including TCR	, LCK, and ZAP70 (data not shown). Al-
though we have not identified a molecule with which
DRAK2 directly interacts, in its absence, critical path-
ways downstream of TCR signaling are overstimulated.

Drak2�/� Mice Are Resistant to EAE
The data presented thus far establish that DRAK2 is a
negative regulator of T cell activation, and in its absence,
T cells are hypersensitive to suboptimal stimuli. Based
on other examples of T cell hypersensitivity, we pre-
dicted that Drak2�/� mice would be more susceptible to
autoimmune disease. To test for spontaneous autoim-
munity, we aged 9 Drak2�/� and 15 Drak2�/� littermates
for at least 15 months and analyzed the major organs
of these mice for cellular infiltrate. In addition, we mea-
sured the amount of anti-nuclear and anti-dsDNA anti-
bodies in the serum of the aged mice. Of the 15 Drak2�/�

mice, only one mouse had a very mild infiltrate in the
pancreas. In the remaining wt and Drak2�/� mice, there
were no signs of cellular infiltration (data not shown). In
addition, none of the Drak2�/� mice had higher levels of
autoantibodies than the wt littermates (data not shown).
Contrary to expectations, there was no obvious increase
in these indicators of autoimmune disease.

In order to test if Drak2 had an impact on induced
autoimmune disease, we compared the responses of wt,
Drak2�/�, and Cbl-b�/� mice in EAE, a model of multiple
sclerosis. In this model, C57BL/6 mice are immunized
with a peptide from myelin oligodendrocyte glycoprotein
(MOG) emulsified in complete Freund’s adjuvant. Induc-
tion of disease is dependent on MOG-reactive CD4�

T cells that cross the blood-brain barrier and induce
inflammation in the spinal cord and the brain. The onset
of disease in wt mice occurred close to day 14 after the

Figure 5. Cellular Localization of DRAK2 and Increased Proximal
initial immunization and reached a maximum aroundTCR Signaling in Drak2�/� T Cells

(A) T cells were purified from the lymph nodes of wt mice and
stimulated with anti-CD3 and anti-CD28 for either 2 min, 1 hr, or 24
hr. The cells were then lysed and separated into cytoplasmic and
nuclear fractions and analyzed by Western for DRAK2 expression. with antibodies against CD4 and CD8, then stimulated with biotin
To confirm that each fraction was pure, the blot was stripped and anti-CD3 and streptavidin. Calcium flux was measured by taking a
reprobed with anti-AKT (cytoplasmic) and anti-PARP (nuclear). ratio of the change in fluorescence of the two dyes as measured
These data are representative of two separate experiments. by flow cytometry. Data represent the calcium flux from CD4� cells.
(B) T cells were purified from the lymph nodes of wt mice and (D) Purified OT-I;Drak2�/� and OT-I;Drak2�/� CD8� T cells were stim-
stimulated with anti-CD3 or anti-CD3 and anti-CD28 for 24 hr. RNA ulated with peptide-pulsed, magnetically labeled APC for 5 min at
was isolated and hybridized to Affymetrix GeneChip arrays. Each 37
C. Each sample was then run over a magnet to separate the APC
sample was done in duplicate, and the average of each normalized and T cells. The T cell fraction was lysed and analyzed by Western
intensity is shown. blot analysis. The amount of ZAP70 is displayed to show that lysates
(C) T cells from Drak2�/� (solid lines) and Drak2�/� (dashed lines) from an equal number of T cells were analyzed. The data represent
mice were purified and labeled with Fluo-4 and Fura red, stained three separate experiments.
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of disease were dramatically reduced in Drak2�/� mice
(Table 1). In accord with symptoms, Drak2�/� mice exhib-
ited a reduced number of infiltrating cells in the nervous
system (Figure 6B), although there were similar numbers
of MOG-specific cells in the spleen and the draining
lymph nodes 20 days after immunization (data not
shown). Therefore, both Drak2�/� and Cbl-b�/� T cells
were hypersensitive to suboptimal stimuli; however, the
impact this hypersensitivity had on autoimmunity was
completely contradictory. In fact, thus far, a deficiency
in Drak2 is the only model of T cell hypersensitivity that
results in a resistance to autoimmunity.

Discussion

DRAK2 is unique in that it is one of the few proteins that
is specifically expressed in lymphoid tissue. Based on
its similarity to DAP-like family members and direct ex-
perimentation (Sanjo et al., 1998), we predicted that
DRAK2 would play a role in T cell apoptosis. However,
we demonstrate here that the absence of Drak2 does
not affect apoptosis of T cells in a number of different
assays. This includes apoptosis of thymocytes in vitro
and two models of in vivo negative selection. In addition,
there was no defect in death of mature T cells after
in vitro stimulation or after an in vivo immune response.
Furthermore, overexpression of Drak2 in Jurkat T cells

Figure 6. Drak2�/� Mice Are Resistant to EAE did not result in an increase of apoptosis (data not
(A) EAE was induced with immunization in the hind flanks with a shown). Therefore, we conclude that DRAK2 does not
MOG peptide emulsified in complete Fruend’s adjuvant. The mice play a critical role in T cell apoptosis.
were monitored daily for signs of disease and given a score ac- An analysis of Drak2�/� mice revealed that it encodes
cording to the severity of disease: 0, no signs of disease; 0.5, altered a negative regulator of T cell activation, and this is sup-gait and/or hunched appearance; 1, limp tail; 2, partial hind limb

ported by several distinct phenotypic differences inparalysis; 3, complete hind limb paralysis; 4, complete hind limb
T cell development and activation. First, positive selec-paralysis and partial forelimb paralysis, and/or moribund. The exper-

iment was performed two times, and the data were pooled together. tion of CD4� T cells was enhanced as illustrated by the
Each line represents the average score for ten Cbl-b�/�, ten Drak2�/�, increase in the number of CD4� thymocytes and an
eight wt mice. The Cbl-b�/� mice were N12 to C57BL/6J and the increase in the levels of CD5 and CD69 expression.
Drak2�/� mice were at least N6 to C57BL/6, and littermates of the There was an increase in memory-like T cells that was
Drak2�/� mice were the wt mice.

antigen specific. The requirement for costimulation was(B) Spinal cords were removed from mice 21 days after EAE immuni-
dramatically reduced although Drak2�/� T cells retainedzation, fixed, decalcified, and stained with Hematoxylin and Eosin.

The images are 40� magnification, and the arrows indicate an exam- sensitivity to costimulation (Figure 2B). In fact, the ef-
ple of mononuclear infiltrate. fects of costimulation, including both proliferation and

survival, were identical in Drak2�/� and wt T cells, with
the exception that Drak2�/� T cells responded to lowerday 26 (Figure 6A and Table 1). As previously reported
doses of anti-CD28 antibodies (Figures 4A and 4B). Con-(Chiang et al., 2000), Cbl-b�/� mice were more suscepti-
trol experiments showed this hypersensitivity was notble to EAE in that a greater number of mice exhibited
due to differences in APC or due to the fact that theresigns of disease, and the severity of this disease was
were more CD62Llo T cells in Drak2�/� mice. Together,elevated compared to wt mice (Table 1). Contrary to our
these data reveal that DRAK2 functions to negativelyexpectations, Drak2�/� mice were not more susceptible
regulate signals involved in T cell activation.to EAE, but rather they were extremely resistant to dis-

The most surprising characteristic observed inease (Figure 6A). Both the incidence and the severity
Drak2�/� mice was the resistance to EAE despite the
T cell hypersensitivity. In other models of negative T cell
regulation that have been tested for autoimmunity, theTable 1. The Incidence and Severity of EAE
mice were either equally susceptible or more suscepti-

Incidence Mean Onset Mean Severity ble to disease when compared with wt mice. In fact,
Wt 6/8 (75%) 14.4 2.3 deficiencies in Cbl-b (Bachmaier et al., 2000; Chiang et
Drak2�/� 2/10 (20%) 18.3 0.7 al., 2000), Itch (Fang et al., 2002), Sts-1 and Sts-2 (Car-
Cbl-b�/� 8/10 (80%) 15.6 2.8 pino et al., 2004), Mgat5 (Demetriou et al., 2001), SHP-1
The incidence of disease reflects the number of mice that scored (Kozlowski et al., 1993; Shultz et al., 1993; Tsui et al.,
a two or higher. The mean onset is the average of the day when 1993), Foxj1 (Lin et al., 2004), CTLA-4 (Tivol et al., 1995;
each mouse first scored one. The mean severity is the average of Waterhouse et al., 1995), PD-1(Nishimura et al., 1999),
the highest score reached by each mouse.

SHIP (Helgason et al., 1998), and Pten (Suzuki et al.,
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2001) all resulted in an increased susceptibility to auto- mice (data not shown). However, this does not eliminate
immunity. Thus far, DRAK2 appears to be the only nega- the possibility that there are more regulatory T cells
tive regulatory molecule that nonetheless conveys resis- present early in the response, and this is sufficient to
tance to autoimmunity. inhibit disease.

Due to the complexity of EAE, there are many opportu- In conclusion, the absence of Drak2 does not appear
nities for a regulatory molecule to affect disease. It is to negatively impact the health or fecundity of mice. Yet,
possible that there is a defect in CD4� T cell expansion a Drak2 deletion renders mice resistant to autoimmune
and survival in response to MOG immunization; how- disease though fully capable of mounting a normal im-
ever, this does not seem likely given the results of experi- mune response to an infectious virus. It thus presents
ments measuring the T cell response in culture or in an evolutionary enigma—what was the selective pres-
response to an infectious agent in vivo. In addition, at sure to evolve a regulatory molecule that inhibits the
day 20 after immunization with MOG, there were similar effectiveness of an immune response and increases the
numbers of antigen-reactive cells in the spleen and propensity for autoimmunity? Whatever the answer, we
draining lymph nodes of Drak2�/� and wt mice (data not note that DRAK2 constitutes a cell type-specific target
shown). Rather, the loss of disease appears to originate that could be inhibited to treat autoimmune disease
from a loss of CNS infiltration. The number of MOG- without the risks normally associated with immune inhi-
specific cells in the spinal cord and brain of the Drak2�/� bition.
mice was reduced compared to wt and Cbl-b�/� mice,
and this number correlated strongly with disease. We Experimental Procedures
are currently investigating the possible reasons for the

Micedifference in migration to the central nervous system
Drak2�/� mice were generated by homologous recombination in(CNS), and obvious possibilities include a disregulation
129SVJ embryonic stem cells. The genomic clone corresponding to

of adhesion molecules, chemokines, or chemokine re- Drak2 was obtained by screening a 129SVJ mouse genomic lambda
ceptors. Consistent with this possibility, there were phage library (Stratagene, La Jolla, CA) by using full-length Drak2
more CD62Llo cells in the spleen of Drak2�/� mice com- cDNA as a probe. Most Drak2�/� mice analyzed were backcrossed

to C57Bl/6 at least six generations, unless indicated in the figurepared to wt mice (Supplemental Figure S4).
legend. In all cases, littermates were used as controls. Cbl-b�/�Another way in which the absence of Drak2 could
mice were a generous gift from Hua Gu and were backcrossed 12affect autoimmunity is by altering the cytokine expres-
generations to C57BL/6.sion of T cells. The amount and timing of cytokine ex-

pression is critical in EAE. An increase in Th2 cytokines
Purification of Lymphoid Populations

can impart resistance to EAE and, paradoxically, IFN-� DN, CD8�, CD4�, and postselection DP thymic subsets were purified
has also been suggested to play an inhibitory role (Pe- from C57BL/6 thymuses by sorting with a FACSVantage (Becton
dotti et al., 2003; Willenborg et al., 1996). In addition, Dickinson, San Jose, CA) after magnetic depletion with MACS beads

(Miltenyi Biotech, Auburn, CA). Preselection DP thymocytes wereT cells deficient in MAP kinase phosphatase 5 (Mkp5)
obtained from a MHC I/II�/� (�2M�/�;I-Ab�/�) thymus and sorted forhave elevated levels of activated JNK and produce more
expression of CD4 and CD8 with the FACSVantage. Peripheralcytokines than wt T cells; however, Mkp5-deficient mice
T cells were purified from the lymph nodes by negative selectionare resistant to EAE (Zhang et al., 2004). Clearly, the
with biotin-CD4 or CD8 and B220, CD11b, DX5, and MHC class II

role of cytokines in EAE is not completely understood, (I-Ab) antibodies (eBioscience, San Diego, CA), followed by separa-
but it is conceivable that an increase in either IFN-� or tion with streptavidin-conjugated magnetic beads (Miltenyi Biotech,
IL-4 by Drak2�/� T cells could result in decreased EAE Auburn, CA). B cells were purified from the spleen by positive selec-

tion with B220-conjugated magnetic beads (Miltenyi Biotech, Au-(Figure 3B).
burn, CA). NK cells and macrophages were obtained from spleno-Drak2-deficiency could affect EAE as a consequence
cytes that were first depleted of T and B cells followed by sortingof altered B cell regulation. Previous experiments
based on CD11b and NK1.1 expression. Macrophages were CD11b�

showed that B cells can play a protective role in EAE
NK1.1� and NK cells were NK1.1� with about half also expressing

through the production of IL-10 (Cross et al., 2001; Dittel CD11b. Dendritic cells were obtained from collagenase-digested
et al., 2000; Wolf et al., 1996). Because DRAK2 is highly spleens that were then spun on a BSA gradient. CD19� and Thy1�

expressed in B cells, it is possible that Drak2�/� B cells cells were removed by magnetic sorting, and the remaining cells
were sorted for expression of CD11c with a FACSVantage. All sub-are also hypersensitive and produce more disease-
sets were greater than 94% pure.inhibiting IL-10. Consistent with this, Drak2�/� B cells

were hyperproliferative to suboptimal stimuli in vitro
Flow Cytometric Analyses(data not shown).
Single cells suspensions of thymus, lymph node, and spleen wereFinally, the effect of Drak2 on autoimmunity may be
stained with FITC-, PE-, TC-, PerCP-, and APC-conjugated antibod-

through regulatory T cells. Given that Drak2�/� conven- ies against CD4, CD8, CD3, CD5, CD25, CD69, CD44, TCR�, CD62L,
tional T cells are hypersensitive to antigenic stimulation, PD-1, ICOS, 41BB, CD27, CD127 (IL-7R) Ly6C, CTLA4, and OX40
it is possible that Drak2�/� regulatory T cells are also (Pharmingen, San Diego, CA; Beckman Coulter, Fullerton, CA; and

eBioscience, San Diego, CA). Cells were analyzed by flow cytometryhypersensitive to stimulation, and the response of the
on a FACSCalibur (Becton Dickinson, San Jose, CA). Analysis wasregulatory T cells could dominate over that of the con-
performed with FlowJo software (TreeStar, Inc., Ashland, OR).ventional CD4� T cells that induce disease. However,

in vitro, Drak2�/� regulatory T cells did not suppress
CFSE ProliferationT cell activation more effectively than wt T cells (data
Purified T cells or whole spleen were labeled with 5,6-carboxyfluo-

not shown). In addition, we did not detect an increase rescein diacetate succinimidyl ester (CFSE, Molecular Probes, Eu-
in the number of CD4�CD25�CD69� or CD4�GITR�T gene OR) at 2.5 �M in PBS for 10 min at 37
C, washed with RPMI
cells in the CNS or draining lymph nodes at day 20 after containing 10% FCS, and incubated with plate bound anti-CD3 or

peptide as described below.MOG immunization in Drak2�/� mice compared to wt
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CD3 Stimulation ZAP-70 (Transduction Labs, Lexington, KY), and phosphorylated
c-Jun (KM-1, Santa Cruz Biotechnology, Inc., Santa Cruz, CA).Anti-CD3 was plate bound by first binding goat anti-hamster (Vector

Laboratories, Burlingame, CA) followed by the appropriate concen-
tration of anti-CD3 ascites (145-2C11). Anti-CD28 ascites (N37) were EAE
added at varying concentrations. After 24–72 hr, T cells were har- Mice were immunized with 125 �g of MOG35-55 (MEVGWYRSPFSR
vested and stained with Annexin V (Pharmingen, San Diego, CA). VVHLYRNGK, Genemed Synthesis, San Francisco, CA) emulsified

in complete Freund’s adjuvant containing 0.4 mg of H37Ra myco-
bacterium tuberculosis (Fisher Scientific, Tustin, CA) in each hindTh1/Th2 Skewing
flank. The mice also received 200 ng of Bordetella pertussis toxinCD4� T cells, purified as described above, were stimulated in Th1
(List Biological, Campbell, CA) intraperitoneally immediately afteror Th2 conditions as described previously (Rengarajan et al., 2002).
immunization and again on day 2. On day 7, the mice were boostedAfter 4 days, the cells were restimulated for 5 hr in the presence of
with another 125 �g of MOG35-55 emulsified in complete Freund’sBrefeldin A, fixed, and permeablized with Cytofix/Cytoperm Plus
adjuvant, followed by one injection of 200 ng Bordetella pertussisstaining kit (Pharmingen, San Diego, CA). The treated cells were
toxin. Each day, the mice were scored for disease using the followingthen stained with PE-anti-IL-2, PE-anti-IFN-g, or PE-anti-IL4 (eBio-
scale: 0, no signs of disease; 0.5, altered gait and/or hunched ap-science, San Diego, CA).
pearance; 1, limp tail; 2, partial hind limb paralysis; 3, complete hind
limb paralysis; 4, complete hind limb paralysis and partial forelimbLCMV Infection
paralysis. Mouse cages were coded and individual mice were scoredLCMV virus was a generous gift from Raymond Welsh. Mice were
without reference to genotype. Mice were euthanized when theyinfected with 2 � 105 PFU of LCMV via intraperitoneal injection.
reached a score of 4.T cells were isolated from the spleen at various days postinfection

and stimulated in vitro for 5 hr in the presence of gp33 or gp61
Acknowledgmentspeptides, IL-2, and Brefeldin A, then stained for intracellular IFN-�

with the cytofix/cytoperm plus kit to detect LCMV-specific T cells.
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