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Humans have a complex body with more degrees of freedom than
needed to perform any particular task. Such redundancy affords
flexible and adaptable motor behavior, provided that all degrees
of freedom can be coordinated to contribute to task perfor-
mance1. Understanding coordination has remained a central
problem in motor control for nearly 70 years.

Both the difficulty and the fascination of this problem lie in
the apparent conflict between two fundamental properties of the
motor system1: the ability to accomplish high-level goals reliably
and repeatedly, versus variability on the level of movement details.
More precisely, trial-to-trial fluctuations in individual degrees of
freedom are on average larger than fluctuations in task-relevant
movement parameters—motor variability is constrained to a
redundant subspace (or ‘uncontrolled manifold’2–5) rather than
being suppressed altogether. This pattern is observed in indus-
trial activities1, posture6, locomotion1,7, skiing8, writing1,9, shoot-
ing3, pointing4, reaching10, grasping11, sit-to-stand2, speech12,
bimanual tasks5 and multi-finger force production13. Further-
more, perturbations in locomotion1, speech14, grasping15 and
reaching16 are compensated in a way that maintains task perfor-
mance rather than a specific stereotypical movement pattern.

This body of evidence is fundamentally incompatible1,17 with
models that enforce a strict separation between trajectory plan-
ning and trajectory execution18–23. In such serial models, the
planning stage resolves the redundancy inherent in the muscu-
loskeletal system by replacing the behavioral goal (achievable via
infinitely many trajectories) with a specific ‘desired trajectory’.
Accurate execution of the desired trajectory guarantees achieve-
ment of the goal, and can be implemented with relatively simple
trajectory-tracking algorithms. Although this approach is com-
putationally viable (and often used in engineering), the many
observations of task-constrained variability and goal-directed
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A central problem in motor control is understanding how the many biomechanical degrees of
freedom are coordinated to achieve a common goal. An especially puzzling aspect of coordination is
that behavioral goals are achieved reliably and repeatedly with movements rarely reproducible in
their detail. Existing theoretical frameworks emphasize either goal achievement or the richness of
motor variability, but fail to reconcile the two. Here we propose an alternative theory based on
stochastic optimal feedback control. We show that the optimal strategy in the face of uncertainty is to
allow variability in redundant (task-irrelevant) dimensions. This strategy does not enforce a desired
trajectory, but uses feedback more intelligently, correcting only those deviations that interfere with
task goals. From this framework, task-constrained variability, goal-directed corrections, motor
synergies, controlled parameters, simplifying rules and discrete coordination modes emerge
naturally. We present experimental results from a range of motor tasks to support this theory.

corrections indicate that online execution mechanisms are able
to distinguish, and selectively enforce, the details that are crucial
for goal achievement. This would be impossible if the behavioral
goal were replaced with a specific trajectory.

Instead, these observations imply a very different control
scheme, which pursues the behavioral goal more directly. Efforts
to delineate such a control scheme have led to the idea of func-
tional synergies, or high-level ‘control knobs’, that have invari-
ant and predictable effects on the task-relevant movement
parameters despite variability in individual degrees of free-
dom1,24,25. However, the computational underpinnings of this
approach—how the synergies appropriate for a given task and
plant can be constructed, what control scheme is capable of using
them, and why the motor system should prefer such a control
scheme—remain unclear. This form of hierarchical control pre-
dicts correlations among actuators and a corresponding reduc-
tion in dimensionality, in general agreement with data26,27, but
the biomechanical analysis needed to relate such observations to
the hypothetical functional synergies is lacking.

Here we aim to resolve the apparent conflict at the heart of
the motor coordination problem and clarify the relationships
among variability, task goals and synergies. We propose to do so
by treating coordination within the framework of stochastic opti-
mal feedback control28,29. Although the idea of feedback control
as the basis for intelligent behavior is venerable—dating back
most notably to Wiener’s Cybernetics movement—and although
optimal feedback controllers of various kinds have been studied
in motor control17,30–34, we feel that the potential of optimal con-
trol theory as a source of general explanatory principles for motor
coordination has yet to be fully realized. Moreover, the wide-
spread use of optimization methods for open-loop trajectory
planning18,20–22 creates the impression that optimal control nec-
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essarily predicts stereotypical behavior. However, the source of
this stereotypy is the assumption that trajectory planning and
execution are separate—an assumption motivated by computa-
tional simplicity and not by optimality.

Our model is based on a more thorough use35 of stochastic
optimal control: we avoid performance-limiting assumptions
and postulate that the motor system approximates the best pos-
sible control scheme for a given task—which will generally take
the form of a feedback control law. Whenever the task allows
redundant solutions, movement duration exceeds the shortest
sensorimotor delay, and either the initial state of the plant is
uncertain or the consequences of the control signals are uncer-
tain, optimal performance is achieved by a feedback control law
that resolves redundancy moment-by-moment—using all avail-
able information to choose the best action under the circum-
stances. By postponing decisions regarding movement details
until the last possible moment, this control law takes advantage of
the opportunities for more successful task completion that are
constantly created by unpredictable fluctuations away from the
average trajectory. As we show here, such exploitation of redun-
dancy not only improves performance, but also gives rise to task-
constrained variability, goal-directed corrections, motor synergies
and several other phenomena related to coordination.

Our approach is related to the dynamical systems view of
motor coordination36,37, in the sense that coupling the optimal
feedback controller with the controlled plant produces a specific
dynamical systems model in the context of any given task. More-
over, as in this view, we make no distinction between trajectory
planning and execution. The main difference is that we do not
infer a parsimonious control law from empirical observations;
instead we predict theoretically what the (possibly complex) con-
trol law should be, by optimizing a parsimonious performance
criterion. Thus, in essence, our approach combines the perfor-
mance guarantees inherent in optimization models with the
behavioral richness emerging from dynamical systems models.

Optimality principles in motor control
Many theories in the physical sciences are expressed in terms of
optimality principles, which have been important in motor con-
trol theory as well. In this case, optimality yields computational-
level theories (in the sense of Marr38), which try to explain why
the system behaves as it does, and to specify the control laws that
generate observed behavior. How these control laws are imple-
mented in the nervous system, and how they are acquired via
learning algorithms, is typically beyond the scope of such theories.
Different computational theories can be obtained by varying the
specification of the physical plant controlled, the performance
index optimized, and the control constraints imposed. Our the-
ory is based on the following assumptions.

The general observation that faster movements are less accu-
rate implies that the instantaneous noise in the motor system is
signal dependent, and, indeed, isometric data show that the stan-
dard deviation of muscle force grows linearly with its mean39,40.
Although such multiplicative noise has been incorporated in
trajectory-planning models22, it has had a longer history in feed-
back control models30,33,35, and we use it here as well. Unlike
most models, we also incorporate the fact that the state of the
plant is only observable through delayed and noisy sensors. In
that case, the calculation of optimal control signals requires an
internal forward model, which estimates the current state by inte-
grating delayed noisy feedback with knowledge of plant dynam-
ics and an efference copy of prior control signals. The idea of
forward models, like optimality, has traditionally been linked to
the desired trajectory hypothesis41. However, the existence of an
internal state estimate in no way implies that it should be used
to compute (and cancel) the difference from a desired state at
each point in time.

Without psychometric methods that can independently esti-
mate how subjects perceive ‘the task’, the most principled way
to define the performance index is to quantify the instructions
given to the subject. In the case of reaching, for example, both
the stochastic optimized submovement model30 and the mini-
mum variance model22 define performance in terms of endpoint
error and explain the inverse relationship between speed and
accuracy known as Fitts’ law. Performance indices based on tra-
jectory details rather than outcome alone have been pro-
posed20,21,32,33, because certain empirical results—most notably
the smoothness20,42 of arm trajectories—seemed impossible to
explain with purely outcome-based indices18,32. However, under
multiplicative noise, endpoint variance is minimal when the
desired trajectory is smooth22 (and executed in an open loop).
Although there is no guarantee that optimal feedback control
will produce similar results, this encouraging finding motivates
the use of outcome-based performance indices in the tasks that
we model here. We also add to the performance index an effort
penalty term, increasing quadratically with the magnitude of the
control signal. Theoretically, it makes sense to execute the present
task as accurately as possible while avoiding excessive energy
consumption—at least because such expenditures will decrease
accuracy in future tasks. Empirically, people are often ‘lazy’, ‘slop-
py’ or otherwise perform below their peak abilities. Such behav-
ior can only be optimal if it saves some valuable resource that is
part of the cost function. Although the exact form of that extra
term is unknown, it should increase faster than linear because
larger forces are generated by recruiting more rapidly fatiguing
motor units.

The principal difference between optimal feedback control
and optimal trajectory planning lies in the constraints on the
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Fig. 1. Redundancy exploitation. The system
described in the text (with X* = 2, a = σ = 0.8)
was initialized 20,000 times from a circular two-
dimensional Gaussian with mean (1, 1) and vari-
ance 1. The control signals given by the two
control laws were applied, the system dynamics
simulated, and the covariance of the final state
measured. The plots show one standard deviation
ellipses for the initial and final state distributions,
for the optimal (left) and desired-state (right)
control laws. The arrows correspond to the
effects of the control signals at four different initial
states (scaled by 0.9 for clarity).X1 X1
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control law. As mentioned earlier, the serial planning/execution
model imposes the severe constraint that the control law must
execute a desired trajectory, which is planned in an open
loop18,20–22. Although some feedback controllers are optimized
under weaker constraints imposed by intermittency30 or spe-
cific parameterizations and learning algorithms17,32, feedback
controllers derived in the LQG framework31,33–35 used here are
not subject to any control constraints28. Realistically, the anatom-
ical structure, physiological fluctuations, computational mech-
anisms and learning algorithms available to the nervous system
must impose information-processing constraints—whose pre-
cise form should eventually be studied in detail. However, it is
important to start with an idealized model that avoids extra
assumptions whenever possible, introducing them only when
some aspect of observed behavior is suboptimal in the idealized
sense. Therefore we use a nonspecific ‘model’ of the lumped
effects of all unknown internal constraints: we adjust two scalars
that determine the sensory and motor noise magnitudes until
the optimal control law matches the overall variability observed
in experimental data. These parameters give us little control over
the structure of the variability that the model predicts.

RESULTS
The minimal intervention principle
In a wide range of tasks, variability is not eliminated, but instead
is allowed to accumulate in task-irrelevant (redundant) dimen-
sions. Our explanation of this phenomenon follows from an intu-
itive property of optimal feedback control that we call the
‘minimal intervention’ principle: deviations from the average tra-
jectory are corrected only when they interfere with task perfor-
mance. If this principle holds, and noise perturbs the system in all
directions, the interplay of noise and control processes will cause
larger variability in task-irrelevant directions. If certain devia-
tions are not corrected, then certain dimensions of the control
space are not being used—the phenomenon interpreted as evi-
dence for motor synergies26,27.

Why should the minimal intervention principle hold? An opti-
mal feedback controller has nothing to gain from correcting task-
irrelevant deviations, because its only concern is task
performance, and, by definition, such deviations do not inter-
fere with performance. Moreover, generating a corrective con-

trol signal can be detrimental, because both noise and effort are
control dependent and therefore could increase. Below we for-
malize the ideas of ‘redundancy’ and ‘correction’ and show that
they are indeed related for a surprisingly general class of systems.
We then apply the minimal intervention principle to specific
motor tasks.

In the simplest example of these ideas, consider the follow-
ing one-step control problem: given the state variables xi, choose
the control signals ui that minimize the expected cost Eε(x1

final +
x2

final – X∗ )2 + r(u1
2 + u2

2) where the stochastic dynamics are xi
final =

axi + ui(1 + σεi); i ∈ {1,2}, and εi are independent random vari-
ables with mean 0 and variance 1. In other words, the (redun-
dant) task is to make the sum x1 + x2 of the two state variables
equal to the target value X∗ , with minimal effort. Focusing for
simplicity on unbiased control, it is easy to show that the opti-
mal controls minimize (r + σ 2)(u1

2 + u2
2) subject to u1 + u2 =

–Err, where Err =� a(x1 + x2) – X∗ is the expected task error if u1
= u2 = 0. Then the (unique) optimal feedback control law is u1
= u2 = –Err/2. This control law acts to cancel the task error Err,
which depends on x1 + x2 but not on the individual values of x1
and x2. Therefore introducing a task-irrelevant deviation (by
adding a constant to x1 and subtracting it from x2) does not trig-
ger any corrective response—as the minimal intervention prin-
ciple states. Applying the optimal control law to the (otherwise
symmetric) stochastic system produces a variability pattern elon-
gated in the redundant dimension (Fig. 1, left).

Now consider eliminating redundancy by specifying a single
desired state. To form the best possible desired state, we use the
average behavior of the optimal controller: x1

final = x2
final = X ∗ /2. 

The feedback control law needed to instantiate that state is ui =
X∗ /2 – axi; i ∈ {1,2}. This control law is suboptimal (because it
differs from the optimal one), but it is interesting to analyze what
makes it suboptimal. Applying it to our stochastic system yields
a variability pattern that is now symmetric (Fig. 1, right). Com-
paring the two covariance ellipses (Fig. 1, middle) reveals that
the optimal control law achieved low task error by allowing vari-
ability in the redundant dimension. That variability could be fur-
ther suppressed, but only at the price of increased variability in
the dimension that matters. Therefore the optimal control law
takes advantage of the redundant dimension by using it as a form
of ‘noise buffer’.

articles

Fig. 2. Final state variability. (a) Dots show
final states (X1, X2) for 1,000 simulation runs
in each task (Results). The ‘task error’ line
shows the direction in which varying the final
state will affect the cost function. The thick
ellipse corresponds to ± 2 standard devia-
tions of the final state distribution. (b) We
varied the following parameters linearly, one
at a time: motor noise magnitude (M) from
0.1 to 0.7; sensory noise magnitude (S) from
0.1 to 0.7; sensory delay (D) from 20 ms to
80 ms; effort penalty (R) from 0.0005 to
0.004; movement time (T) from 410 ms to
590 ms. For each modified parameter set, we
constructed the optimal control law (inter-
cept task) and ran it for 5,000 trials. The plots
show the bias (that is, the average distance
between the two point masses at the end of
the movement), the ratio of the standard
deviations in the task-irrelevant versus task-
relevant directions, and the average of the
two standard deviations.
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This example illustrates two additional properties of optimal
feedback control that will be discussed in more detail below.
First, the optimal control signals are synergetically coupled—
not because the controller is trying to ‘simplify’ the control prob-
lem, but because the synergy is the optimal solution to that
problem. Second, the optimal control signals are smaller than
the control signals needed to instantiate the best possible desired
state (Fig. 1).

What is redundancy, precisely? In the case of reaching, for
example, all final arm configurations for which the fingertip is
at the specified target are task-equivalent, that is, they form a
redundant set. During the movement, however, it is not obvious
what set of intermediate arm configurations should be consid-
ered task-equivalent. Therefore we propose the following more
general approach. Let the scalar function v∗ (t,x) indicate how
well the task can be completed on average (in a sense to be made
precise below), given that the plant is in state x at time t. Then it
is natural to define all states x(t) with identical v∗ (t,x) as being
task-equivalent.

The function v∗ is not only needed to define redundancy, but
also is fundamental in stochastic optimal control theory, which
we now introduce briefly to develop our ideas. Let the instanta-
neous cost for being in state x ∈ �m and generating control u ∈
�n at time t be q(t,x) + uT R(t,x) u ≥ 0, where the first term is a
(very general) encoding of task error, and the second term penal-
izes effort. The optimal feedback control law u = π∗ (t,x) is the
time-varying mapping from states into controls that minimizes
the total expected cost. The function v∗ (t,x), known as the ‘opti-
mal cost-to-go’, is the cumulative expected cost if the plant is ini-
tialized in state x at time t, and the optimal control law π∗ is
applied until the end of the movement. To complete the defini-
tion, let x–(t) be the average trajectory, and on a given trial let the
plant be in state x– + ∆x at time t. The deviation ∆x is redundant
if ∆v∗ (∆x) = 0, where ∆v∗ (∆x) =� v∗ (t,x– + ∆x) – v∗ (t,x–).

Returning to the case of reaching, at the end of the movement
our definition reduces to the above kinematic approach, because
the instantaneous cost and the cost-to-go become identical. Dur-
ing the movement, however, v∗ depends on dynamics as well as

kinematics: whereas all paths that lead to the tar-
get appear redundant from a kinematic point of
view, completing the movement from intermedi-
ate states far from the target (such as the mid-
points of curved paths) requires larger control
signals—which are more costly and introduce
more multiplicative noise.

Next we formalize the notion of ‘correcting’ a
deviation ∆x away from the average x–. It is natur-
al to define the corrective action corr due to the
optimal control signal u = π∗ (t,x– + ∆x) as the
amount of state change opposite to the deviation.
To separate the effects of the control signal from

those of the passive dynamics, consider the (very general) fami-
ly of dynamical systems dx = a(t,x)dt + B(t,x)udt +
Σk

i=1Ci(t,x)udεi, where a(t,x) are the passive dynamics, B(t,x) are
the control-dependent dynamics, Ci(t,x) are multiplicative noise
magnitudes, and εi(t) are independent standard Brownian
motion processes. For such systems, the expected instantaneous
state change x

.
u due to the optimal control signal is x

.
u = B(t,x– +

∆x)π∗ (t,x– + ∆x). Now the corrective action can be defined by
projecting –x

.
u on ∆x: corr(∆x) =� �∆x, –x

.
u�.

To complete the analysis, we need to relate ∆v∗ (∆x) and
corr(∆x), which in turn requires a relationship between v∗ and
π∗ . The latter two quantities are indeed related, and v∗ carries all
the information needed to compute π∗ —which is why it is so
fundamental to optimal control theory. In particular, π∗ (t,x) =
–Z(t,x)–1 B(t,x)T v∗

x(t,x), where Z(t,x) =� 2R(t,x) + Σk

i=1Ci(t,x)T

v∗
xx(t,x) Ci(t,x), and v∗

x and v∗
xx are the gradient and Hessian of v∗ .

Expanding v∗ to second order, also expanding its gradient v∗
x to

first order, and approximating all other quantities as being con-
stant in a small neighborhood of x–, we obtain

∆v∗ (∆x) ≈ �∆x,v∗
x + v∗

xx∆x�
corr(∆x) ≈ �∆x,v∗

x + v∗
xx∆x�

BZ –1BT

where the weighted dot-product notation �a,b�M stands for
aTMb.

Thus both corr(∆x) and ∆v∗ (∆x) are dot-products of the same
two vectors. When v∗

x + v∗
xx∆x = 0, which can happen for infi-

nitely many ∆x when the Hessian v∗
xx is singular, the deviation

∆x is redundant and the optimal control law takes no corrective
action. Furthermore, corr and ∆v∗ are positively correlated, that
is, the control law resists single-trial deviations that take the sys-
tem to more costly states and magnifies deviations to less costly
states.

This analysis confirms the minimal intervention principle to
be a very general property of optimal feedback control, explain-
ing why variability patterns elongated in task-irrelevant dimen-
sions have been observed in such a wide range of experiments
involving different actuators and behavioral goals.
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Fig. 3. Trajectory variability. Within-subject positional
variance (left) compared to model variance (right).
Dots mark passage through the intermediate targets;
the square in each inset marks the starting position.
(a) In the multiple target condition A, experiment 1,
subjects moved through the black targets shown in the
inset. In the constrained trajectory condition B, 16
more targets (gray) were added. (b) In the ‘1 small’
condition, experiment 3, the first intermediate target
was smaller; in the ‘2 small’ condition, the second
intermediate target was smaller.
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Mechanical redundancy
The exploitation of mechanical redundancy in Fig. 1 occurs under
static conditions, relevant to postural tasks in which this phe-
nomenon has indeed been observed6. Here the same effect will
be illustrated in simulations of more prolonged behaviors, by
repeatedly initializing a system with two mechanical degrees of
freedom from the same starting state, applying the correspond-
ing optimal control signals for 0.5 s, and analyzing the distribu-
tion of final states (Methods; Supplementary Notes online).

Task-constrained variability has been observed in pistol-
aiming tasks, where the final arm postures vary predominantly
in the joint subspace that does not affect the intersection of the
pistol axis with the target3. We reproduce this effect in a simple
model of aiming (Sim 1): a two-dimensional point mass has to
make a movement (about 20 cm) that ends anywhere on a spec-
ified ‘line of sight’ X2 = X1 tan(–20°). On different trials, the opti-
mally controlled movement ended in different locations that were
clustered along the line of sight—orthogonal to the task-error
dimension (Fig. 2a, Aiming). The same effect was found in a
range of models involving different plant dynamics and task
requirements. To illustrate this generality, we provide one more
example (Sim 2): two one-dimensional point masses (positions
X1, X2) start moving 20 cm apart and have to end the movement
at identical (but unspecified) positions X1 = X2. The state covari-
ance ellipsoid is again orthogonal to the (now different) task-
error dimension (Fig. 2a, Intercept). Such an effect has been
observed in two-finger11 and two-arm5 interception tasks.

We analyzed the sensitivity of the Intercept model by varying
each of five parameters one at a time (Fig. 2b). Before delving into
the details, note that the basic effect—the aspect ratio being greater
than one—is very robust. Increasing either the motor or the sen-
sory noise increases the overall variability (average s.d.). Increasing
the motor noise also increases the aspect ratio (to be expected, given
that such noise underlies the minimal inter-
vention principle), but increasing the sen-
sory noise has the opposite effect. This is
not surprising; in the limit of infinite sen-
sory noise, any control law has to function
in open loop, and so redundancy exploita-
tion becomes impossible. The effects of the
sensory delay and sensory noise are simi-
lar: because the forward model extrapolates
delayed information to the present time,
delayed sensors are roughly equivalent to
instantaneous but more noisy sensors
(except when large abrupt perturbations
are present). The general effect of increased
movement time is to improve performance:
both bias and overall variability decrease,
while the exploitation of redundancy
increases. The effort penalty term has a
somewhat counterintuitive effect: although
derivation of the minimal intervention
principle relies on the matrix 2R +
ΣCi

Tv∗
xxCi being positive-definite (r + σ2 >

0 in the simple example), increasing R actu-
ally decreases the exploitation of redun-
dancy. We verified that the latter effect is
not specific to the Intercept task.

Trajectory redundancy
Unlike the extensively studied case of
mechanical redundancy, the case of end-

point trajectory redundancy has received significantly less atten-
tion. Here we investigate the exploitation of such redundancy by
focusing on pairs of conditions with similar average trajectories
but different task goals.

In experiment 1, we asked eight subjects to make planar arm
movements through sequences of targets (Fig. 3a). In condition
A, we used five widely spaced targets, whereas in condition B we
included 16 additional targets chosen to fall along the average
trajectory produced in condition A (Methods). The desired tra-
jectory hypothesis predicts no difference between A and B. Our
model makes a different prediction. In A, the optimal feedback
controller (with target passage times that were also optimized;
Sim 3) minimizes errors in passing through the targets by allow-
ing path variability between the targets (Fig. 3a). In B, the
increased number of targets suppresses trajectory redundancy,
and so the predicted path variability becomes more nearly con-
stant throughout the movement. Compared to A, the predicted
variability increases at the original targets and decreases between
them. The experimental results confirm these predictions. In A,
the within-subject positional variance at the intermediate targets
(mean ± s.e.m, 0.14 ± 0.01 cm2) was smaller (t-test, P < 0.01)
than the variance at the midpoints between those targets (0.26 ±
0.03 cm2). In B, the variances at the same locations were no
longer different (0.18 ± 0.02 cm2 versus 0.18 ± 0.03 cm2). Com-
pared to A, the variance increased (P < 0.05) at the original tar-
get locations and decreased (P < 0.01) between them. The average
behavior in A and B was not identical, but the differences can-
not account for the observed change in variability under the
desired trajectory hypothesis (Supplementary Notes). This phe-
nomenon was confirmed by reanalyzing data from the pub-
lished42 experiment 2, where subjects executed via-point and
curve-tracing movements with multiple spatial configurations
(Supplementary Notes).
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Fig. 4. Hitting and throwing. (a) Examples of hand trajectories. In the experimental data, time of
impact was estimated from the point of peak velocity. Note that the strategy of moving back and
reversing was not built into the model—it emerged from the operation of the optimal feedback con-
troller. (b) For each subject and trial, we analyzed the movement in a 430-ms interval around the
point of peak velocity (hit), which corresponded to the forward swing of the average movement. The
variance at each timepoint was the determinant of the covariance matrix of hand position (2D in the
simulations and 3D in the data). Peak variance was normalized to 1. The x, y and z hand coordinates
at the endpoint were correlated with x(t), y(t) and z(t) at each point in time t, and the average of the
three correlation coefficients plotted. All analyses were performed within subjects (around 300 trials
per subject), and the results averaged. The same analyses were repeated on the synthetic trajectories
(500-ms time window).
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Optimal control also predicts different variability patterns in
moving through targets with identical locations but varying sizes.
Passing through a smaller target requires increased accuracy,
which the optimal controller (Sim 4) achieves by increasing vari-
ability elsewhere—in particular at the remaining targets (Fig. 3b).
The desired trajectory hypothesis again predicts no effect. These
predictions were tested in experiment 3. Each of seven subjects
participated in two conditions: the first target small or the sec-
ond target small. As predicted, the variability at the smaller tar-
get (0.34 ± 0.02 cm2) was less (P < 0.05) than the variability at
the larger one (0.42 ± 0.02 cm2).

The results of these three experiments clearly demonstrate
that the motor system exploits the redundancy of end-effector
trajectories—variability is reduced where accuracy is most need-
ed and is allowed to increase elsewhere. This is necessarily due
to online feedback control, because, first, if these movements
were executed in an open loop the variability would increase
throughout the movement, and second, in related experiments35

in which vision of the hand was blocked while the targets
remained visible, the overall positional variance was about two
times higher.

Hitting and throwing tasks present an interesting case of tra-
jectory redundancy because the hand trajectory after impact
(release) cannot affect the outcome. We reanalyzed data from the
published43 experiment 4, where nine subjects hit ping-pong balls
to a target. The hand movements were roughly constrained to a
vertical plane—starting with a backward swing, reversing, and
swinging forward to hit the horizontally flying ball (Fig. 4a).

Because impact cannot be represented with linear dynamics,
we modeled a closely related throwing task in which the ball is
constrained to be released in a certain region. We first built the
optimal controller (Sim 5) and found its average trajectory. That
trajectory was then used as the desired trajectory for an optimal
trajectory-tracking controller (Sim 6). Note that the trajectory-
tracking controller immediately cancels the variability in start-
ing position, resulting in more repeatable trajectories than the
optimal controller (Fig. 4a). The price for this repeatability is
increased target error: the optimal controller sends the ball to the
target much more accurately because it takes advantage of tra-
jectory redundancy.

The optimal controller is not concerned
with where the movement ends; thus it
allows spatial variability to accumulate after
release (Fig. 4b). The same phenomenon
was observed in the experimental data: the
variance at the end point divided by the

variance at the impact point was 7.6 ± 2.2, which was significantly
different (P < 0.05) from 1. In contrast, the trajectory-tracking
controller managed to bring positional variance to almost zero
at the end of the movement. Both in the experimental data and
optimal control simulations, positional variance reached its peak
well before the reversal point (Fig. 4b). In the trajectory track-
ing simulations, peak positional variance occurred much later—
near the point of peak forward velocity.

Another difference between the two controllers was observed
in the temporal correlations of the resulting trajectories. In tra-
jectory tracking, the correlation between hand coordinates
observed at different points in time drops quickly with the time
interval, because deviations are corrected as soon as they are
detected. The optimal controller on the other hand has no rea-
son to correct deviations away from the average trajectory as long
as they do not interfere with task performance (the minimal
intervention principle). As a result, temporal correlations remain
high over a longer period of time—similar to what was observed
experimentally. In both the data and optimal control simulations
(Fig. 4b), the hand coordinates at impact/release were well cor-
related (r ≈ 0.5) with the endpoint coordinates observed on the
same trial. In contrast, the same correlation for the trajectory-
tracking controller was near 0.

Redundancy in object manipulation
The most complex form of redundancy is found in object manip-
ulation, where the task outcome depends on the state of the con-
trolled object, which may in turn reflect the entire history of
interactions with the hand. We investigated such a task in exper-
iment 5, in which five subjects manipulated identical sheets of
paper and turned them into paper balls. The amount of trial-to-
trial variability (Fig. 5a) was larger than any previously report-
ed. In fact, the magnitude of within-subject joint variability
observed at a single point in time was comparable to the overall
range of joint excursions in the course of the average trajectory
(Fig. 5b). If the movements we observed followed a desired tra-
jectory whose execution were as inaccurate as the data implies,
the human hand should be completely dysfunctional. Yet all of
the trials we analyzed were successful—the task of making a paper
ball was always accomplished.
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Fig. 5. Hand manipulation. (a) MIP versus PIP
joints of the index finger for a typical subject,
first 500 ms. The starting posture is marked
(o). (b) Relative variance. A value of 50% would
indicate that the ‘noise’ and the average trajec-
tory cause equal amounts of joint excursion.
(c) Principal components analysis (PCA) of
trial-to-trial variability. The PC magnitudes
(averaged over subjects and time points) corre-
spond to the axis lengths of the multijoint
covariance ellipsoid. Ten PCs are needed to
account for 95% variance. (d) Top, examples of
postures observed 300 ms into the movement
(after time alignment) in one subject. Bottom,
examples of synthetic postures, where each
joint angle is taken from a randomly chosen
trial (at 300 ms, same subject).
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To test whether the variability
pattern was elongated, we did prin-
cipal components analysis (PCA)
on all the postures measured in the
same subject and the same point in
time (Fig. 5c). Clearly the joint
space variability is elongated in
some subspace. But is that sub-
space redundant, and how can we
even address such questions in
cases where the redundant dimen-
sions are so hard to identify quan-
titatively? We propose the following
intuitive graphical method. Sup-
pose that for a given subject and
point in time, we generate synthet-
ic hand postures by setting each
joint angle to the corresponding
angle from a randomly chosen
trial. This ‘bootstrapping’ proce-
dure will increase variability in the
subspaces that contain below-
average variability, and decrease
variability in the subspaces that
contain above-average variability.
Therefore, if the synthetic postures
appear to be inappropriate for the
task (as in Fig. 5d), the variability
of the observed postures was
indeed smaller in task-relevant
dimensions. Thus redundancy is
being exploited in this task.

Of course hand movements are
not always so variable; for exam-
ple, grasping a cylinder results in
much more repeatable joint trajec-
tories (Fig. 5a and b). It is striking
that two such different behavioral
patterns are generated by the same
joints, controlled by the same mus-
cles, driven by largely overlapping
neuronal circuits (at least on the lower levels of the sensorimo-
tor hierarchy) and, presumably, subject to the similar amounts
of intrinsic noise. This underscores the need for unified models
that naturally generate very different amounts of variability when
applied to different tasks. We will show elsewhere that optimal
feedback control models possess that property.

Emergent properties of optimal feedback control
Although our work was motivated by the variability patterns
observed in redundant tasks, the optimal feedback controllers
we constructed displayed a number of additional properties relat-
ed to coordination. This emergent behavioral richness is shown
in a telescopic ‘arm’ model, which has M point masses sliding up
and down a vertical pole in the presence of gravity. Points 0:1,
1:2, … M-1:M (0 being the immovable base) are connected with
‘single joint’ linear actuators; points 0:2, … M-2:M are connect-
ed with ‘double-joint’ actuators. The lengths X1, X2, …XM of the
single-joint actuators correspond to joint ‘angles’. The last point
mass (whose position is X1 + X2 + … + XM) is defined to be the
end-effector (Supplementary Notes).

The first task we study is that of passing through a sequence of
4 targets at specified points in time, for the system M = 3 (Fig. 6a).

The optimal controller (Sim 7) seems to be keeping X2 constant
and only using X1 and X3 to accomplish the task. If this behav-
ior were observed experimentally, it would likely be interpreted as
evidence for a ‘simplifying rule’ used to solve the ‘redundancy
problem’. No such rule is built into the controller here—the effect
emerges from symmetries in the controlled system (a similar
although weaker effect is observed in X2 and X4 for M = 5, but
not for M = 2 and M = 4). More importantly, X2 is not really
‘frozen.’ X2 fluctuates as much as X1 and X3, and substantially
more than the end-effector (Fig. 6a). Thus all three joints are
used to compensate for each other’s fluctuations, but that infor-
mation is lost when only the average trajectory is analyzed.

We have already seen an example of a synergy (Fig. 1), where
the optimal controller couples the two control signals. To exam-
ine this effect in a more complex scenario, we constructed the
optimal feedback controller for the 4 targets task in the M = 10
system (Sim 7) and defined the number of synergies at each point
in time as the rank of the Lt matrix (which maps the current state
estimate into a control signal; Methods). This rank is equal to
the dimensionality of the control subspace that the optimal con-
troller can span for any state distribution. Although the M = 10
system has 19-dimensional control space and 40-dimensional

articles

Fig. 6. Telescopic ‘arm’ model. (a) Example of a problem where the optimal controller seems to ‘freeze’ one
degree of freedom (X2). The plot shows means and 95% confidence intervals for the three joint angles and
the end-effector. (b) The non-zero eigenvectors of the Lt matrix at each timepoint t. The grayscale intensi-
ties corresponds to the absolute values of the 19 actuator weights in each eigenvector (normalized to unit
length). (c) Variability on different levels of description and for different indices of performance: control sig-
nals (Cntl), actuator forces (Frc), joint angles (Jnt), end-effector trajectory (Trj) and end-effector positions at
the specified passage times (Tar). To convert kinetic variables (forces and control signals) into centimeters,
we divided each variable by its average range and multiplied by the average joint range. (d) Effects of per-
turbing all control signals at the time marked with the dotted line, in a sinusoidal tracking task. The pertur-
bations had standard deviation 30 N. (e) Relative phase was computed by running the simulation for 5 s,
discarding the first and last cycle, and for each local minimum of X1 + X2 finding the nearest (in time) local
minimum of X1. This was done separately for each oscillation frequency. (f) The cost of each feedback con-
troller for the postural task was evaluated via Monte Carlo simulation, and its parameters were optimized
using the nonlinear simplex method in Matlab. Average results from five runs of the learning algorithm. The
‘observed’ and ‘reshuffled’ curves correspond to the observed end-effector variability, and the end-effector
variability that would result if the single-joint fluctuations were independent. The same curves are shown as
a function of the number of joints M, using the corresponding optimal controller for the four-target task.
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state space, only up to 4 dimensions of the control space were
used at any time (Fig. 6b). The similarity of each greyscale pattern
over time indicates that each synergy (that is, eigenvector of Lt)
preserved its structure. One synergy disappeared after passing
through each target, whereas the remaining synergies remained
roughly unchanged. This suggests an interpretation of synergy 1
as being used to move toward the current target, synergy 2 as
being used to adjust the movement for the next target, etc.

Motor coordination is sometimes attributed to the existence
of a small number of ‘controlled’ parameters24, which are less
variable than all other movement parameters. To study this
effect in the M = 2 system executing the four-targets task, we
specified the index of performance on five different levels of
description: control signals, actuator forces, joint angles, end-
effector trajectory and end-effector positions at the specified
passage times. The average behavior of the controller optimal
for the last index was used to define the first four indices, so
that all five optimal controllers had identical average behavior.
In each case, we measured variability on each of the five levels of
description. On each level, variability reached its minimum (�)
when the index of performance was specified on the same level
(Fig. 6c). Furthermore, for the task-optimal controller (Index
= Tar), the different levels formed a hierarchy, with the task-
related parameter being the least variable, and the parameter
most distant from the task goal—the control signal—being the
most variable. The same type of ordering was present when the
task was specified in terms of joint angles (Index = Jnt), and
almost present for the end-effector trajectory specification
(Index = Trj). This ordering, however, did not hold for kinetic
parameters: force and control signal variability were higher than
kinematic variability even when these parameters were speci-
fied by the index of performance. Thus, higher variability at the
level of kinetics compared to kinematics is a property of the
mechanical system being controlled, rather than the controller
being used.

Responses to external perturbations are closely related to
the pattern of variability, because the sensorimotor noise gen-
erating that variability is essentially a source of continuous per-
turbation. Because an optimal controller allows variability in
task-irrelevant dimensions, it should also offer little resistance
to perturbations in those dimensions. Such behavior has indeed
been observed experimentally1,14–16. In the M = 2 system per-
forming a sinusoidal tracking task with the end-effector (Sim 9;
Fig. 6d), at the time marked with a dotted line, we added a ran-
dom number to each of the three control signals. The pertur-
bation caused large changes in the trajectory of the intermediate
point, whereas the end-effector trajectory quickly returned to
the specified sinusoid.

‘Discrete coordination modes’ also emerge from the opti-
mal control approach (Fig. 6e). In the sinusoidal tracking task
(M = 2), we built the optimal controller (Sim 9) for each oscil-
lation frequency and measured the relative phase between the
oscillations of the end-effector (X1 + X2) and the intermediate
point (X1). We found two preferred modes—in phase and 180°
out of phase, with a fairly sharp transition between them. In
the transition region, the phase fluctuations increased. The same
behavior was observed with additive instead of multiplicative
control noise (data not shown). Although the present model is
not directly applicable to the extensively studied two-finger tap-
ping task37, the effect is qualitatively similar to the sharp tran-
sition and accompanying phase fluctuations observed there,
and shows that such behavior can be obtained in the frame-
work of optimal feedback control.

The effects of increasing mechanical complexity (varying the
number of point masses M from 1 to 20) were studied in the four-
targets task. The difference between the observed end-effector
variability and the ‘reshuffled’ variability (the variability that
would have been observed if the joint fluctuations were inde-
pendent) is a measure of how much redundancy is being exploit-
ed. This measure increased with mechanical complexity (Fig. 6f,
right). At the same time, the performance achieved by the optimal
controller improved relative to the performance of a trajectory-
tracking controller whose desired trajectory matched the aver-
age joint trajectory of the optimal controller. The cost ratio varied
from 0.9 for M = 1 to 0.22 for M = 20 (Sim 8).

In all the examples considered thus far, we have used the opti-
mal control law. Do we expect the system to exploit redundancy
only after a prolonged learning phase in which it has found the
global optimum, or can redundancy exploitation be discovered
earlier in the course of learning? This questions was addressed in
a postural task (M = 2) requiring the end-effector to remain at a
certain location (while compensating for gravity). We initialized
the feedback law with the optimal open-loop controller and then
applied a generic reinforcement learning algorithm (Sim 10),
which gradually modified the parameters of the feedback law so
as to decrease task error. The algorithm quickly discovered that
redundancy is useful—long before the optimal feedback law was
found (Fig. 6f, left).

DISCUSSION
We have presented a computational-level38 theory of coordina-
tion focusing on optimal task performance. Because the motor
system is a product of evolution, development, learning and
adaptation—all of which are in a sense optimization processes
aimed at task performance—we argue that attempts to explain
coordination should have similar focus. In particular, the pow-
erful tools of stochastic optimal control theory should be used to
turn specifications of task-level goals into predictions regarding
movement trajectories and underlying control laws. Here we
used local analysis of general nonlinear models, as well as sim-
plified simulation models based on the LQG formalism, to gain
insight into the emergent properties of optimally controlled
redundant systems. We found that optimal performance is
achieved by exploiting redundancy, explaining why variability
constrained to a task-irrelevant subspace has been observed in
such a wide range of seemingly unrelated behaviors. The emer-
gence of goal-directed corrections, motor synergies, discrete
coordination modes, simplifying rules and controlled parameters
indicates that these phenomena may reflect the operation of
task-optimal control laws rather than computational shortcuts
built into the motor system. The experiments presented here
extend previous findings, adding end-effector trajectories and
object manipulation to the well-documented case of mechanical
redundancy exploitation. Taken together our results demon-
strate that, from the motor system’s perspective, redundancy is
not a ‘problem’; on the contrary, it is part of the solution to the
problem of performing tasks well.

While motor variability is often seen as a nuisance that a
good experimental design should suppress, we see the internal
sources of noise and uncertainty as creating an opportunity to
perform ‘system identification’ by characterizing the probabil-
ity distribution of motor output. Variability results provide per-
haps the strongest support for the optimal feedback control
framework, but there is additional evidence as well. In a detailed
study of properties of reaching trajectories (E.T., Soc. Neurosci.
Abstr. 31, 301.8, 2001), our preliminary results accounted for
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other movement properties: (i) smoothness of most movements
and higher accuracy with less smooth movements; (ii) gradual
correction for target perturbations and incomplete correction
for perturbations late in the movement44; (iii) reduced speed
and skewed speed profiles in reaching to smaller targets; (iv)
directional reaching asymmetries45, of which the motor system
is aware46 but which it does not remove even after a lifelong
exposure to the anisotropic inertia of the arm. Elsewhere we
have explained cosine tuning as the unique muscle recruitment
pattern minimizing both effort and errors caused by multi-
plicative motor noise40.

The linear dynamics inherent in the LQG framework can cap-
ture the anisotropic endpoint inertia of multijoint limbs, mak-
ing it possible to model phenomena related to inertial
anisotropy45,47. However, endpoint trajectory phenomena such
as the lack of mirror symmetry in via-point tasks21 require non-
linear models. Another limitation of linear dynamics is the need
to specify passage times in via-point tasks. The problem can be
avoided by including a state variable that keeps track of the next
target, but this makes the associated dynamics nonlinear. We
intend to study optimal feedback control models for nonlinear
plants. However, the theory developed here is independent of
the LQG methodology we used to model specific tasks. Although
many interesting effects will no doubt emerge in nonlinear mod-
els, the general analysis we presented assures us that the basic
phenomena in this paper will remain qualitatively the same.

Our theory concerns skilled performance in well-practiced
tasks, and does not explicitly consider the learning and adapta-
tion that lead to such performance. Adaptation experiments are
traditionally interpreted in the context of the desired trajectory
hypothesis. However, observations of both overcomplete23 and
undercomplete48,49 adaptation suggest that a more parsimonious
account of that literature may be possible. We have presented
(E.T., Soc. Neurosci. Abstr. 31, 301.8, 2001) preliminary models of
force field adaptation23,49 within the optimal feedback control
framework. Our previous visuomotor adaptation results48 may
seem problematic for the present framework, but, with due con-
sideration for how the nervous system interprets experimental
perturbations, we believe we can account for such results (Sup-
plementary Notes). In future work, we aim to extend and unify
our preliminary models of motor adaptation, and incorporate
ideas from adaptive estimation and adaptive optimal control. It
will also be important to address the acquisition of new motor
skills, particularly the complex changes in variability structure5

and number of utilized degrees of freedom1,50. Reinforcement
learning29 techniques should provide a natural extension of the
theory in that direction.

Finally, the present argument has general implications for
motor psychophysics. If most motor tasks are believed to differ
mainly in their desired trajectories, whereas the trajectory exe-
cution mechanisms are universal, one can hope to uncover those
universal mechanisms in simple tasks such as reaching. Under-
standing a new task would then require little more than mea-
suring a new average trajectory. In our view, however, such hopes
are unfounded. Although the underlying optimality principle is
always the same, the feedback controller that is optimal for a
given task is likely to have unique properties, revealed only in
the context of that task. Therefore, the mechanisms of feedback
control need to be examined carefully in a much wider range of
behaviors. Single-trial variability patterns and responses to
unpredictable perturbations—when analyzed from the per-
spective of goal achievement—should provide insight into the
complex sensorimotor loops underlying skilled performance.

METHODS
Numerical simulations. Although the optimal control law π∗ is easily
found given the optimal cost-to-go v∗ , v∗ itself is in general very hard to
compute: the Hamilton–Jacobi–Bellman equation it satisfies does not
have an analytical solution, and the numerical approximation schemes
guaranteed to converge to the correct answer are based on state-space
discretization practical only for low-dimensional systems. Making the
state observable only through delayed noisy feedback introduces sub-
stantial further complications.

Therefore, all simulation results in this paper are obtained within the
extensively studied linear-quadratic-Gaussian (LQG) framework28, which
has been used in motor control31,33,34. We adapted the LQG framework
to discrete-time linear dynamical systems subject to multiplicative noise:
xt+∆t = Axt + But + Σk

i=1Ciutεi,t. The controls ut—corresponding to the
neural signals driving the muscles—are low-pass filtered to generate force.
The task error is quadratic: xt

TQtxt. The state xt—which contains posi-
tions, velocities, muscle forces, and constants specifying the task—is not
observable directly, but only through delayed and noisy measurements
of position, velocity, and force. The optimal control law is in the form 
ut = –Ltx̂t, where x̂t is an internal state estimate obtained by a forward
model (a Kalman filter). We use one set of parameters for the telescopic
arm model and another set for all other simulations. For details of the
adapted LQG control methodology and the specific simulations, see Sup-
plementary Notes.

Experiments 1 and 3. Subjects moved an LED pointer (tracked with
an Optotrak 3020, 120 Hz) on a horizontal table through sequences
of circular targets projected on the table. After the LED was positioned
at the starting target, the remaining targets were displayed, and the
subject was free to move when ready. After each trial, all missed tar-
gets were highlighted. If trial duration (time from leaving a 2 cm diam-
eter start region to when hand velocity fell below 1 cm/s) was outside
a specified time window, a “Speed up” or “Slow down” message
appeared. Methods were similar to42. The data from all trials were ana-
lyzed. Within-subject positional variance was computed from a set of
trajectories as follows. First, all trajectories from one subject and con-
dition were resampled at 100 equally spaced points along the path.
Second, the average trajectory was computed. Third, for each average
point, the nearest point from each trial was found. Fourth, the sum of
the x and y variances of these nearest points was averaged over sub-
jects and expressed as a function of path length (eliminating 5% of the
path at each end to avoid artifacts of realignment). In experiment 1,
subjects executed 40 consecutive movements per condition, 1.2–1.5 s
time window, 1 cm target diameter. The extra targets in condition B
were specified using the average trajectory measured from 3 pilot sub-
jects in condition A. In experiment 3, subjects executed 15 consecu-
tive trials per condition, 1.2–1.4 s time window; target diameter was
1.6 cm, except for the smaller target (first or second, depending on the
condition), which was 0.8 cm.

Experiment 5. Five subjects manipulated a square (20 × 20 cm) sheet
of paper to turn it into a paper ball, as quickly as possible (∼ 1.5 s move-
ment duration), using their dominant right hand. After 10 practice tri-
als, 20 hand joint angles were recorded in 40 trials (Cyberglove, 100 Hz
sampling). An effort was made to position the hand and the paper in
the same initial configuration. To ensure that variability did not arise
from the recording equipment or data analysis methods, 40 trials were
recorded from one subject grasping a cylinder (3 cm diameter). Each
joint angle for each subject was separately normalized, so that its vari-
ance over the entire experiment was 1. All trials were aligned on move-
ment onset. The time axis for each trial was scaled linearly to optimize
the fit to the subject-specific average trajectory. Each joint angle was
linearly detrended to eliminate possible drift over trials. ‘Relative vari-
ance’ was defined by computing the trial-to-trial variance separately
for each subject, joint angle and time point. The results were then aver-
aged over subjects and joint angles.

Note: Supplementary information is available on the Nature Neuroscience

website.
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