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Calcium is tightly regulated in mammals because of the critical role of calcium ion concentra-
tions in many physiological functions. In this work, we develop a model for calcium homeo-
stasis and identify integral feedback control as a functional module that maintains this
homeostasis. We argue that maintaining calcium concentrations in a narrow range and perfect
adaptation seen when the calcium homeostatic mechanism is subjected to extreme distur-
bances are the result of a feedback control system implementing integral control through
specific interactions of the regulating hormones. Based on the constraints imposed by the
suggested integral control, we arrive at a simple dynamical model for calcium homeostasis. We
show that the model is biologically plausible and is consistent with known physiology.
Furthermore, the utility of the integral-feedback model is revealed by examining an extreme
calcium perturbation, parturient paresis in dairy cows.

1. Introduction

Calcium is an important physiological cation.
Calcium salts maintain the integrity of the skel-
eton structure, and calcium ions in intracellular
and extracellular fluids are instrumental in con-
trolling a large number of biochemical processes.
Indeed, while intracellular calcium ions are
needed in the activity of a large number of
enzymes and are also involved in conveying
information from the surface to the interior of
the cell, extracellular calcium ions are necessary
for neuro-muscular excitability, blood clotting
and hormonal secretion among many other func-
tions (Griffin & Ojeda, 1996). For these impor-
tant biochemical roles to be accomplished,
extracellular and intracellular concentrations of
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calcium are maintained within a narrow range.
Typically, the total serum calcium concentration
is maintained between 8.5 and 10.5mgdl™"! in
humans (Griffin & Ojeda, 1996) and between
8 and 10 mgdl ™! in dairy cows (Goff et al., 1996).

When calcium demand from the plasma is in-
creased, calcium homeostasis is achieved through
the influx of calcium to the blood from bone,
kidney, and intestine under a tight hormonal
control discussed in later sections. As a result of
this hormonal control, and under normal circum-
stances, the blood plasma calcium concentration
in humans and many animals remains constant
regardless of variations in the calcium concentra-
tion of the diet and calcium demands to meet
milk production and fetal growth needs.

In dairy cows, the lactational need for calcium
is particularly large especially at the onset of
parturition (calving). Most animals adapt to this
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large demand and plasma calcium concentra-
tions return to normal after a transient period of
reduced concentration. This remarkable adapta-
tion takes place despite the 4-5-fold increase in
the rate of calcium clearance from the plasma
typically seen at parturition (Oetzel & Goff, 1998;
Anderson, 1970). Yet, some cows fail to recover
normal calcium levels, which disrupts nerve and
muscle function and results in the clinical syn-
drome known as milk fever or parturient paresis
(Oetzel & Goff, 1998; Anderson, 1970).

In this work, we will develop an analytical
description for the dynamics of the calcium
homeostatic mechanism. We will use this descrip-
tion to understand the normal operation of the
system and to determine the causes of its failure,
resulting in clinical disorders such as milk fever.

2. Dynamic Model Development

An attempt to model the calcium homeostatic
mechanism in the dairy cow in terms of control-
led, controlling and disturbing signals was
presented in a paper by Ramberg et al. (1984).
Controlled signals are defined to be the plasma
calcium concentration [Ca], and bone calcium
content M,, while the controlling signals are
taken to be intestinal calcium absorption, bone
calcium resorption and renal calcium reabsorption.
The disturbing signals are those that cause loss of
calcium from the blood plasma. They take the
form of endogenous fecal calcium, clearance via
glomerular filtration, placental calcium transport
to the fetus during pregnancy, calcium deposition
into the bone, and milk calcium secretion during
lactation. For short-term calcium regulation
(hours to weeks), only control of [Ca], may be
considered since it has higher priority than M, in
that time period (Ramberg et al., 1984).

In order to develop a mathematical model for
calcium homeostasis we start by defining Vy,,. (t)
to be the rate (g day ~!) at which calcium is trans-
ported from bone into the plasma at time t.
Similarly, we define Vi,eqine(t) to be the rate
(g day 1) at which calcium is transported into the
plasma through intestinal absorption at time t.
Then V¢ (t), the total rate of calcium introduced
into the plasma, is given by

Vr (t) = Vione (t) + Vintestine ([) (1)

Set point 1
Control Vol I

[Ca],

F1G. 1. Overall closed-loop system for calcium homeo-
stasis.

Next, we denote by V,;(t) the calcium clearance
rate from the plasma (g day '), at time t. Calcium
clearance takes place through various avenues,
the most important of which is milk production,
but also includes feces, urine, transport to the
fetus during pregnancy, and deposition into the
bone. Based on the conservation of mass, we may
express the rate of change of plasma calcium as
follows:

d 1
T [Ca]p = ol (Vr — Vo),

where vol refers to the total plasma volume. From
the above relation we can also write

[Cal, = — f Ve — V) de.

vol J,

A similar model for the plasma calcium pool can
be found in Hurwitz et al. (1983). Since the
plasma calcium concentration is regulated via
feedback control to accurately follow a concen-
tration setpoint, the rate of calcium supply Vi (t)
must depend on the difference between that set-
point and the actual concentration [Ca],. This
difference is subsequently referred to as the track-
ing error. The nature of this dependence dictates
by dynamical behavior of the regulated variables
and is therefore of key significance. Based on this
formulation, the overall closed-loop feedback
system is shown in Fig. 1 where the control block
signifies the dependence of V; on the tracking
error.

2.1. SHORTCOMINGS OF EXISTING MODEL FOR V,,

A model for Vi was provided by Ramberg et al.
(1984). Based on experimental data, the following
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expression of V was given:

Vp = 1770(0.104 — [Ca],) (gday?),

where [Ca], is the plasma calcium concentration
in g1~ . This expression for the total rate of
calcium supply into the plasma represents
a negative feedback model whereby the size of Vi
at any given time depends on the plasma calcium
concentration at that time. The type of feedback
represented by this model is often referred to as
proportional feedback. It is the simplest type of
feedback possible, and is in general characterized
by a feedback expression of the form K,e(t),
where K, is a real constant, and e(t) is the track-
ing error.

Next, we analyse the proportional feedback
model reported by Ramberg et al. in the context
of the overall calcium homeostasis mechanism.
We argue that while proportional feedback pos-
sesses some potential for regulation, it cannot be
the mechanism responsible for achieving calcium
homeostasis. We make our argument based on
the dynamics resulting from proportional feed-
back. In this case, the control block in Fig. 1 is
just the proportionality constant K. Considering
that V= K,e(t) = Kp (r — [Ca],), we get the
following:

1 t
[Cay = o7 | [Kelr — [Cad) ~ Vi
0

Therefore, the dynamics of the feeback control
scheme are characterized by the differential
equation

d[C K V. K
[a]p—i——l;[Ca],,: _Cl_|_ p

— —_— r’
dt VO vol  vol

where r is that calcium concentration setpoint.
From this differential equation it can be seen
that if V,; = 0, then homeostasis will indeed be
achieved, as [Ca], will approach r in the steady
state regardless of the initial condition on [Ca],.
However, further analysis of this differential
equation also reveals that perfect adaptation to
step changes in V,; can never be achieved. Indeed,
the steady-state error associated with a constant
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FIG. 2. Plot of simulation result for proportional model.
Calcium disturbance occurs at time zero.

V., of magnitude V,, will be a non-zero constant.
In the case of the proportional feedback reported
by Ramberg et al. (1984), where K,, is equal to
1770, this constant is equal to — V,;/1770. This
implies that the plasma calcium concentration
will fail to return to the setpoint value in response
to a large and sudden change in V, (such as the
onset of lactation around parturition), and
a steady-state error will persist. This result is
simulated in Fig. 2. This is contrary to the ob-
served complete adaptation of the calcium ho-
meostatic mechanism to an increase in calcium
clearance. Another implication of the above error
relation is that the steady-state error is dependent
on the value of V  —indicating a lack of robust-
ness in the regulation mechanism. Here again,
this is not in agreement with the fact that the
actual adaptation to the onset of lactation is
robust in addition to being complete. Yet, a third
piece of evidence against utility of the propor-
tional feedback model derives from the shape of
the response of the first-order differential equa-
tion to a constant change in V,,. Upon applying
such a constant increase in V,, [Ca], responds
with a corresponding continuous monotonic de-
crease in its value until the steady-state value of
[Ca], is reached. This characteristic first-order
response takes place regardless of the value of
any of the system parameters such as the con-
stant of proportionality of the feedback, the
plasma volume, etc. It is qualitatively different
from the actual physiological time response.
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3. The Necessity of Integral Feedback

We now propose that the calcium homeostatic
system must employ integral feedback. This is
based on a principle of feedback control theory
that dictates that in order to obtain a zero steady-
state error to a constant disturbance, integral
feedback must be present. We propose a feedback
model for V; that adds to the proportional feed-
back another integral feedback term, resulting in
what is commonly referred to by control engin-
eers as proportional-integral (PI) control. The
proposed expression for Vy at a given time is

VT = er + KI je,

where K, and K; are constants and e is the
calcium regulation error consisting of the differ-
ence between the setpoint r and [Ca],. The sche-
matic of the system is shown in Fig. 3. In this
case, the differential equation describing the dy-
namics of the feedback system is second order,
and is given by

d’[Cal, Kpd[Cal, K,
de? vl i ool LCR
_ 1 dVv, K,dr r
vol dt  voldt + K vol’

Since r is a constant in the above equation, then
dr/dt = 0.

A key consequence of integral control is that
perfect adaptation is a structural property of the
system. It is also a robust property that takes
place regardless of the level of disturbance V,; or
the system parameters K,, K;, vol, etc. Step cha-
nges of any magnitude result in zero steady-state
error after a short transient period. Furthermore,
the transient response characteristics of the re-
sulting second-order system agree quite well with

Set point 1 [Ca]p

FIG. 3. Closed-loop system with PI controller.

0.10

o

==

=]
T

o
[
3]

g

=

=N
1

Calcium concentration (g 1)
=}
=
~J]
T

e

o

w
T

0‘04 L 1 1 L 1 L L 1 L
-3 -2 -1 0 1 2 3 4 5 6 7

Time around parturition (days)

FIG. 4. Plot of actual data (~e—) and simulation result
(=) for second-order system. For the simulated response,
V., is increased from 20 to 70 gday ! at the onset of lacta-
tion. The single points in the plot correspond to the average
of plasma calcium concentrations for 18 calving cows over
a 10-day period around parturition. The data are taken for
Jersey cows at their third or greater lactation. Heparinized
blood samples were taken from the jugular vein and
the plasma obtained for analysis. Plasma calcium is analysed
by atomic absorption spectrophotometry. Results are pre-
sented as means + S.E.

the transient response characteristics seen in real
data. In Fig. 4, actual calcium profiles in cows are
plotted along with the computer-simulated re-
sponse of the second-order system with integral
feedback. The single points in the plot corres-
pond to the average of plasma calcium concen-
trations for 18 calving cows over a 10-day period
around the day of parturition. The solid plot
corresponds to the simulated response for the
second-order model when V,, is increased from 20
to 70 g day ! at the onset of lactation. The values
of K, and K; used in the computer simulation
were identified using data from a second set of 20
claving cows. The closeness of the fit suggests
that in normal cows the homeostatic response is
modeled quite well by the second-order dynamics
dictated by integral feedback.

4. Physiological Basis

The proposed model has a number of attract-
ive features: it has robust perfect adaptation as
a structural property and it yields responses that
agree with real data both during transients and in
the steady state. In this section we show that it
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has a physiological basis. Much of the model
features are attributed directly to the presence of
integral feedback. Indeed, as we have remarked
earlier, integral feedback control is necessary for
the robust perfect adaptation to increases in V.
So a key issue to be determined is the physiolo-
gical mechanism by which integral feedback is
realized. In Section 4.1 we explore two alterna-
tives for realizing proportional integral feedback
through the action of hormones.

4.1. REALIZING INTEGRATION BY MEANS OF HORMONES

We start by considering whether propor-
tional-integral feedback can be realized with
a single hormone. Suppose the total calcium in-
put into the plasma (Vr) is proportional to the
concentration of one hormone, say hormone A. If
we denote this concentration by [Hormone A],
then we have

Vi oc [Hormone A].

Accordingly, PI feedback could only be ex-
plained in this case when

d d
— K— .
T [Hormone A] oc <err0r + i err0r>

However, this relation is not very likely for at
least two reasons. First, it suggests that the rate of
production of Hormone A must depend on the
calcium error as well as the calcium error rate
of change, and thus two mechanisms for the
production of Hormone A must be present. Sec-
ondly, the above relation indicates that the mech-
anism for producing Hormone A must somehow
rely on measurements of the derivative of the
error. Direct measurement of the error is likely to
be a difficult and noise-prone task.

Alternatively, if two hormones realize the PI
control for calcium regulation, an elegant and
quite plausible solution emerges. Suppose two
hormones A and B are involved. We propose the
following:

® The concentration of Hormone A is propor-
tional to the error:

[Hormone A] oc error.

e The production rate of Hormone B is propor-
tional to the concentration of Hormone A:

d
@ [Hormone B] oc [Hormone A].

¢ The rate of calcium influx into the plasma Vr is
composed of two parts, one proportional to the
Hormone A concentration, the other propor-
tional to the Hormone B concentration:

Ve=V4+ Vs,
where
V4, oc [Hormone A] and Vy oc [Hormone B].

Thus, the proportional component of our PI
control is given by V,, while the integral com-
ponent is giving by V3. Furthermore, the con-
centration of Hormone A provides a measure
of the error while the concentration of Hor-
mone B provides a measure of the integral of
the error. That the second postulate offers
a plausible means for generating the integral of
the error is a consequence of the underlying
suggestion that only the concentration of an-
other hormone, and not its rate of change, is
needed in determining the production rate of
Hormone B—much like a catalyst concentra-
tion would determine the rate of a chemical
reaction.

Without additional information, it is difficult
to say more about the feedback control rea-
lization based on control theory alone. In Sec-
tion 4.2 we will see that based on what is
known of the physiology of calcium homeo-
stasis, the above postulates are indeed very
good representations of reality.

4.2. ENDOCRINOLOGY OF CALCIUM HOMEOSTASIS

It has been established in the literature that
when calcium demand from the plasma is in-
creased, calcium homeostasis is achieved through
the inflow of calcium from the bone, kidney
and intestine under the control of two major
hormones: parathyroid hormone (PTH), and an
important metabolite of vitamin D: 1-25-
dihydroxycholecalciferol (1,25-DHCC) (Griffin
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& Ojeda, 1996; Conn & Melmed, 1997). Para-
thyroid hormone is secreted by the parathyroid
glands in response to a decrease in the calcium
plasma concentration from the setpoint. Experi-
ments have shown that the production as very
much a linear function of the deviation from the
setpoint (Ganong, 1991; Greenspan & Baxter,
1993). PTH acts mainly on the bone and kidney.
Upon the increase in PTH concentration, a pro-
cess known as osteocytic osteolysis takes place, in
which PTH causes the removal of bone salts from
the bone matrix by lacunar osteocytes. This oc-
curs within minutes and proceeds without actual
resorption of bone matrix (Guyton, 1991). More
short-term needs are met through osteocytic os-
teolysis. If high concentrations of PTH persist,
a delayed response (hours to days), known as
osteoclastic bone resorption, takes place due to
the activation of the bone osteoclasts. This pro-
cess involves resorbing the bone matrix itself and
allows the response to PTH to continue beyond
what can be handled by osteocytic osteolysis.
Thus, the need for maintaining plasma calcium
concentrations is deemed more important than
maintaining the integrity of the bone. The effect
of PTH on the kidney is to increase tubular
reabsorption of calcium thus reducing calcium
loss through urine. Therefore, the impact of PTH
is to increase immediate calcium transfer into the
blood plasma. On the other hand, the main role
of 1,25-DHCC is to stimulate intestinal calcium
absorption through increasing formation of a cal-
cium-binding protein in the intestinal epithelial
cell (Duke, 1993). In fact, 1,25-DHCC is
considered to be the most potent stimulator of
calcium absorption from the intestine. It is
well known that 1,25-DHCC is produced from
cholecalciferol, a biologically inactive form of vit-
amin D after it undergoes several hydroxylation
steps in the liver and kidney (Griffin & Ojeda,
1996; Conn & Melmed, 1997; Guyton, 1991;
Duke, 1993). The last hydroxylation step in the
kidney takes place only under stimulation by
PTH. Calcitonin, the third hormone involved
in calcium homeostasis, has relatively little rel-
evance during hypocalcemia and therefore
will not be considered. In fact, calcitonin is not
secreted until plasma calcium levels exceed
9.5mgdl~!. Above this calcium level, plasma
calcitonin is directly proportional to plasma

calcium (Ganong, 1991; Greenspan & Baxter,
1993). A plot of PTH and calcitonin vs. plasma
calcium shows two straight lines of negative and
positive slopes, respectively, intersecting at normal
calcium levels, therefore generating the calcium
setpoint (Greenspan & Baxter, 1993). Hence,
we anticipate that calcitonin would play the
same dynamical role as PTH during periods of
negative error.

In what follows, considering the case of
hypocalcemia, we will put the above-mentioned
relationships into mathematical terms and show
that the PI controller is very efficiently imple-
mented through hormonal interaction. Let us
start by considering V,,., the rate at which cal-
cium is transported into the plasma from bone.
We can express Vi, as a fraction of the total
calcium available in bone for resorption. Hence
we have

Vbone = Upone VB> (2)

where V5 is the quantity of calcium that is avail-
able for resorption in bone. Clearly, 0 < o0,
< 1. We know that PTH stimulates bone resorp-
tion, so we may model o,,. as a function of the
PTH concentration:

%pone = fo ((PTH]). 3)

To a first-order approximation, and assuming
that f,(0) =0, we would have f,([PTH]) =
o, [PTH] for some constant o;. On the other
hand, we known that at any given time PTH
secretion by the parathyroid gland—and hence
PTH plasma concentration—is proportional to
the [Ca], deficiency (Greenspan & Baxter, 1993).
Thus

[PTH] = oe, (4)
where e is the deviation of the calcium concentra-
tion from its setpoint and is defined as
e := setpoint — [Ca],. From eqns (2) and (4), we
have the following equation:

I/bone = Kp~ e,

where we have defined K,:=o,x,Vp. Therefore,
PTH stimulation of bone resorption can account
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for the proportional feedback component of the
total calcium supply V7. Similarly, the intestinal
absorption we can express Vi, eqine s a fraction of
the total calcium available in the animal’s diet:

Vintestine = Wintestine Vi: (5)

where V; is the calcium available in the diet.
As before, 0 < tyrestine < 1. Since intestinal ab-
sorption is stimulated by concentrations of
1,25-DHCC, we could model it as a function of
the 1,25-DHCC concentration:

Lintestine = fi ([1,25 — DHCC]). (6)

Similarly, we could assume a first-order approxi-
mation of f;(-). We can therefore write f; ([1,25-
DHCC]) = «;[1,25-DHCC] for some constant
;. In this case, we have

I/intestine = I/l : [1725 - DHCC] (7)

We now turn to modeling the relation between
PTH and the 1,25-DHCC production rate. As
mentioned previously, the last hydroxylation step
of cholecalciferol in the kidney takes place under
PTH stimulation. Thus, assuming a large pool of
cholecalciferol, and considering the considerably
large half-life of 1,25-DHCC (Martin, 1985), the
production of the biologically active 1,25-DHCC
could be thought of as being directly propor-
tional to the PTH concentration. Therefore, we
will model the rate of production of 1,25-DHCC
in the kidney to be proportional to the plasma
concentration of PTH. Thus

% [1,25 — DHCC] = a, [PTH],

which implies that

[1,25 — DHCC] = «, f z ((PTH]) dz. (8

0

Therefore, eqns (7) and (8) together yield the
following relationship:

t

I/intestine = O‘p“il/i Jv ([PTH]) dT' (9)

0

Replacing [PTH] in the above equation by its
expression in eqn (4), we get

t
Vintestine = KI J' (8) dr s (10)
0

where Kj: = oo,0.V;. This, we now propose,
is the means by which integration is realized.
Vione and Vieaine contribution to the total
calcium inflow V; implements the proposed PI
controller.

5. Studying Calcium Homeostatic Disorders
using Dynamic Models: A Parturient
Paresis Case Study

Occasionally, the calcium homeostatic mecha-
nism in dairy cows experiences some failures. On
the day of calving, dairy cows typically produce
101 of colostrum containing 23 g or more of
calcium, approximately six times as much cal-
cium as the extracellular calcium pool contains.
Most animals adapt to the onset of lactation by
rapidly increasing intestinal calcium absorption
and bone calcium resorption. However, in some
cows, the calcium regulatory mechanism breaks
down. These animals become severely hypocal-
cemic, which disrupts neuromuscular signaling,
resulting in recumbency and the clinical syn-
drome referred to as parturient paresis, or simply
milk fever (Anderson, 1970; Oetzel & Goff, 1998).
Milk fever affects about 6% of the dairy cows in
the US each year according to the 1996 National
Animal Health Monitoring Survey. The eco-
nomic impact of the disease is exacerbated by the
fact that cows that experience milk fever are more
susceptible to other disorders such as mastitis,
displaced abomasum, and ketosis. Usually, milk-
fever cows are treated with intravenous calcium
injections that keep them alive until intestinal
and bone resorption adapt to the large calcium
clearance. Figure 5 shows the plasma calcium
concentration plot vs. time for a milk-fever cow
treated with IV calcium infusion. We now pro-
pose to use the integral feedback model to study
milk fever. While the linear model proposed (with
f; and f, approximated by linear relations)
describes quite well the calcium homeostasis
function in healthy animals, it must be modified
to account for nonlinear effects inherent in the
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F1G. 5. Plasma calcium concentration in a cow with clini-
cal milk fever treated with 10.5 g calcium intravenously over
a 12-min period at day 0.5 after parturition.

calcium homeostatic mechanism that become
significant in milk fever. The first of the nonlinear
effects that are introduced in our linear model
takes the form of a saturation in the proportional
control term. The physical justification of this
saturation follows from the observation that
calcium reserves from bone are limited by the
osteocytic osteolysis process and cannot be
increased indefinitely in proportion to [PTH].
Beyond a certain limit, an increase in [PTH]
does not lead to a corresponding increase in
bone resorption of calcium. Therefore, using the
same terminology as before, we could express Vigpe,
the rate of calcium provided by the bone as

Vbone = SatL (Kp e)s

where Sat; is a saturation function whereas
Sat; (x) is equal to x if x is less than or equal to
L and assumes the constant value L when x
exceeds L. The second key nonlinear effect intro-
duced into the model reflects the impact of
reduced [Ca], on the intestinal absorption
processes. Experiments by Daniel (1983), demon-
strated a highly significant correlation between
plasma calcium levels and the amplitude and rate
of both gut and abomasal motility in cows. This
observation is explained in terms of the general
effects of a depression in the levels of ionized
calcium on smooth muscle contractility and

1,

model for calcium homeostasis.

FIG. 6. Nonlinear
f denotes the intestinal nonlinear reduction factor.

neuromuscular transmission. The effect of low
plasma calcium on the supply rate of calcium
through intestinal absorption has been modeled
as a non-linear, monotonically increasing factor
multiplying the absorption coefficient. This fac-
tor assumes a value of unity at the setpoint indi-
cating that gut motility does not play a role
around normal levels of calcium, and becomes
progressively smaller than one for lower levels for
[Ca],. This can be mathematically modeled by
the following equation:

Vintestine = |:KI J‘Ed’f:| f([ca]p)

with f being the nonlinear multiplication factor
or function. This multiplication factor is difficult
to measure experimentally. We adopted a multi-
plication factor that is a quadratic function of
[Ca],, which has been obtained by considering
the product of the rate and amplitude linear
regression equations for rumen motility given by
Daniel (1983) which is then normalized to give
unity value at normal [Ca], levels. It should be
pointed out here that obtaining an accurate
shape of such a multiplication factor is neither
practically feasible nor important. The main
point here is to study the qualitative effects that
such a multiplicative factor may have on the
regulatory system dynamics, and in particular
whether it can lead, in computer simulations, to
a breakdown in the calcium regulatory mecha-
nism similar to what is observed in milk-fever
animals. The rationale behind this argument is
more elaborated upon through a theorem pro-
vided in a subsequent section.

Figure 6 shows the resulting control system,
while Fig. 7 shows the behavior of the system for
low and high values of K, and K.
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6. Mathematical Analysis

For the model depicted in Fig. 6, we have
shown using numerical simulation that for a set
of values of the model parameters, a breakdown
in the calcium concentration level characteristic
of that seen in milk-fever animals does indeed
take place. In what follows, we prove analytically
that this breakdown will occur for a continuum
of values of the model parameters, and is not
limited to a carefully chosen set of parameters.
Let us consider the state space equations of the
system shown in Fig. 6, given by

1
Xy = ol (Saty (K, (r — xq)) + f(x1) x2 — Vo),

X, = Ky (r — x4),

where x, is the output of the calcium pool integ-
rator, x, is the output of the PI block integrator,
r is the calcium setpoint (i.e. the normal calcium
concentration that should be tracked at all
times), L is the saturation limit in the propor-
tional branch and f(+) is the nonlinear function
corresponding to the effect of excessive decrease
of [Ca], on intestinal absorption. Obviously,
the equilibrium point of this system can be

X

F1G. 8. Phase portrait for K, = 3000 and K; = 12000.
The circles on the plot represent equilibrium points before
and after the calcium clearance disturbance.

computed to be

We could study this system numerically through
phase portrait analysis. In this analysis, the differ-
ential equations governing the system are solved
for different sets of initial conditions for x; and
Xx,. The resulting solutions are plotted in the
x1—Xx, plane. The results are shown in Figs 8
and 9. The trajectory of interest to us is the one
passing through the (0.08, 20) point, since this is
the pre-disturbance equilibrium point. It is inter-
esting to see that for K, = 4300 and K; = 1800,
the post-disturbance trajectory goes to the new
equilibrium point (0.08, 70), which corresponds
to the [Ca], setpoint and the new clearance rate,
while for decreased values of these parameters,
the regulatory system breaks down. This break-
down is characterized by the post-disturbance x,
state increasing without bound. We could reach
a similar result analytically. In fact, we provide
a theorem which proves that for a range of rela-
tionships between the model parameters, insta-
bility (corresponding to milk fever) will occur in
this model after a step increase in the calcium
clearance V.
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FIG. 9. Phase portrait for K, = 4300 and K; = 1800. The
circles on the plot represent equilibrium points before and
after the calcium clearance disturbance.

Theorem. Consider the dynamical system de-
scribed above with the initial conditions x(0) =
X1o <1 and x,(0) = x,0 < X. If

e L< I/Cla
® f(x10) < volB/(Xx + K;1?/(ox — B)) where 0 < ff <
o:= V,; — Ljvol,

then x4 (t)(t = 0) will be monotonically decreasing
and for some T < x10/(0 — ), x1(T) =0.

Proof. Let T =min{t > 0:x,(1) =0}. Define
T =min(T, x;o/(¢ — ). We know that

x3(0) = x2(0) + f %5(1)dt = x5(0)

+ Jt K;(r — x4(1))dr, (11)

0

where 0 <t < T'. (11) implies that

SO <FHK Tr<i+Kir—t% < 54K,
«—p —p
(12)
Also for t = 0, we have
xl <f‘(xl (t))XZ (t) — (13)

vol

Sofor0 << T,

Xl(t) <

fx1(0) <x

Kﬂ"z
— o 14
vol * > 8 (14

o—p

Therefore for t =0

. B _ K;r
O < x =g <x t —ﬁ>

—a=f—-a<0. (15)

Since f is monotonically increasing, it follows
from eqn (14) that x,(z) is decreasing and

X1() <X ()< f—a<0, 0<r<T" (16)

Thus,
Xl(r) dr < X1 (O)

+(B—o)T =0. (17)

This implies that T < T", and therefore T =T’
< X19/(¢ — B), which completes the proof. []

7. Discussion

In this paper, we considered the application of
control theory concepts in the modeling and
analysis of blood plasma calcium homeostasis in
dairy cows. A dynamic model based on integral
feedback control was proposed. This model cap-
tures the observed perfect adaptation of the ho-
meostatic mechanism in response to increased
calcium demand. A physiological basis for inte-
gral feedback in which PTH and 1,25-DHCC
interact with each other to produce an integral
effect was proposed. The dynamic model
proposed for healthy animals is a linear model.
However, when nonlinearities modeling the
saturations in the bone response to PTH and the
reduction in gut motility after an excessive
decrease in calcium concentration were intro-
duced, our proposed dynamic model produced
the homeostatic breakdown characteristic of
milk fever.
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One of the points advocated through this
model is that homeostasis may be quite naturally
described in the context of dynamical systems
using the language and perspectives of feedback
control theory. This point of view has many ad-
vantages, which we illustrate using the example
of calcium homeostasis. As mentioned in the pre-
vious sections, it is possible to reach important
conclusions about the nature of the underlying
calcium feedback mechanism in dairy cows using
only qualitative features of the calcium concen-
tration profiles. One key feature that is reflected
in the data is the consistent and robust adapta-
tion of the calcium homeostasis mechanism to
the onset of lactation. The profound implications
of this remarkable adaptation on the structure of
the underlying homeostatic mechanism seem to
have gone unrecognized in the literature, as evid-
enced by the proportional feedback homeostasis
model used by Ramberg et al. When one invokes
feedback control theory, however, the necessity
of integral feedback is inescapable. With integral
feedback in place, a simple dynamic model of the
calcium homeostatic mechanism was obtained.
This model not only possesses the property of
perfect adaptation, but also exhibits transient
characteristics prior to adaptation that are sim-
ilar to those seen in actual data. Yet, the most
important implication of integral feedback does
not lie in producing a simple dynamical model
that agrees well with the actual data. Rather, it
lies in the severe structural constraints that it
imposes on the underlying homeostatic mecha-
nism. Such constraints explain the role of PTH
and 1,25-DHCC in homeostasis and the nature of
the interaction between these two hormones. In-
deed PTH measures the error and leads to bone
resorption in proportion to that error, all the
while leading to the production of 1,25-DHCC at
a rate proportional to the error. As a result, the
1,25-DHCC hormone concentrations will be pro-
portional to the integral of the error. In turn
1,25-DHCC results in intestinal absorption, thus
implementing integral feedback. Therefore, the
function of PTH and 1,25-DHCC hormones and
the nature of their interaction is a direct result of
the requirements of integral control—so much so
that the mere existence of two hormones respon-
sible for calcium homeostasis, along with their
function and the nature of their mutual interac-

tion, may be hypothesized based on the require-
ments of integral feedback control alone, without
prior knowledge of the endocrinology of calcium
homeostasis. The significance of this may be
better appreciated when one considers that
1,25-DHCC and its role in calcium homeostasis
was discovered as late as the 1970s. Even when
one takes for granted the presence of two hor-
mones responsible for calcium homeostasis dur-
ing hypocalcemia, in the absence of explanations
that rely on integral feedback the only explana-
tion for the need for two hormones (as opposed
to a single hormone) is redundancy. Based on the
arguments put forth in this article, that explana-
tion must be abandoned.

As a result, several themes readily emerge from
the application of control theory to the study of
biological systems. One major theme relates to
the advantages of using the ideas of control the-
ory in the derivation of necessary conditions for
the structure of biological system and the type of
control used to achieve homeostasis. These con-
ditions can be used to eliminate some hypotheses
and favor others. At this stage, known biology
could be used to gain more confidence in the
favored hypotheses.

Another advantage of the dynamical point of
view of homeostasis in the context of feedback
control is achieved during disease. When homeo-
static mechanisms break down, a dynamic
description of homeostasis could provide sugges-
tions for identifying the causes of the breakdown,
while eliminating those possibilities that are not
consistent with the model dynamics. In the case
of calcium homeostasis, as a result of the nonlin-
ear effects introduced to model saturation in the
bone response to PTH and reduction in gut
motility during severe hypocalcemia, a break-
down in calcium concentration levels has been
seen in simulation and can be proven to take
place for a continuum of values of the model
parameters. As a result, the dynamic model
would suggest that a reduction in bone respon-
siveness to PTH may be an important factor
leading to milk fever. At the same time, it can be
shown that for breakdown to take place in this
case, the reduced bone responsiveness of PTH
must be accompanied by a reduction in gut
motility and that neither effect alone can be re-
sponsible for milk fever. We have only proposed



28 H. EL-SAMAD ET AL.

one scenario for milk fever, but other possibilities
may exist. Even in this case, the dynamical model
based on integral feedback control can serve as
a key test for the viability of candidate mecha-
nisms for milk fever and to suggest further experi-
ments or courses for treatment.

The successful understanding of calcium regu-
lation mechanism through verifiable models can
have two other important implications. First, ac-
tive regulation of calcium through artificial
means, e.g. using implanted devices, becomes
possible. In engineering terms, this corresponds
to designing the controller for a given system
model. Many effective techniques exist in the
control systems literature for this purpose. Sec-
ondly, the added understanding of calcium regu-
lation gained by studying the dynamics of the
calcium feedback loop may shed new light on
other calcium diseases that affect humans, most
notably osteoporosis. This is achieved by incor-
porating the dynamical model for calcium ho-
meostasis, which includes the coupling dynamics
of PTH and 1,25-DHCC with existing models
in the literature that capture the dynamics of
osteoblast and osteoclast cell populations (Suda
et al., 1992a, b; Kroll, 2000). Since osteoblasts are
responsible for bone formation while osteoclasts
lead to bone resorption, it is the ratio and activity
pattern of these populations that determine the
net bone loss during osteoporosis. Therefore by
studying these cell population dynamics we hope
to obtain a better understanding of the dynamics
of bone resorption.

Finally, we would like to compare the results
reported in this work to those published recently
by Saunders et al. (2000) where the authors at-
tribute calcium homeostasis to a control scheme
they refer to as Integral Rein Control (IRC). The
basic idea behind IRC is that the equilibrium
value for calcium is determined by functions de-
pendent on the level of a chromogranin-derived
peptide CgA, which is hypothesized to inhibit
both calcitonin and PTH. This equilibrium is
therefore independent of the external variables
(being the input of calcium from the gut). Once
this setpoint is fixed, the balance between
calcitonin and PTH adjusts dynamically to com-
pensate for the disturbance, thus maintaining
calcium at its equilibrium. This scheme works
locally, yielding a zero steady-state error to

disturbances, provided the equilibrium obtained
this way is stable. Here, we argue that IRC does
not adequately describe calcium homeostasis for
several reasons. We will only elaborate on the
most salient of these reasons.

First, the model developed by Saunders et al.
ignores some of the known physiology of calcium
regulation. For example, the model considers gut
input as a disturbance. This is in contradiction
with the known literature where intestinal ab-
sorption is itself a controlling variable whose
level is determined by the concentration of
1,25-DHCC. The production of 1,25-DHCC is
inturn controlled by the PTH concentration. In
fact, as mentioned in previous sections, it has
been irrefutably established that PTH and 1,25-
DHCC in concert are the major players respon-
sible for calcium homeostasis. Calcitonin plays
a role, but only during hypercalcemia. Without
calcitonin, calcium clearance will still take place
and eventually brings the calcium concentration
to its setpoint. In fact, an excess or deficiency in
PTH or 1,25-DHCC produces dramatic clinical
disorders while an excess or deficiency in cal-
citonin (e.g. after thyroidectomy) produces few
discernible abnormalities (Greespan & Baxter,
1993). The IRC model hinges critically on both
calcitonin and PTH and ignores completely
1,25-DHCC. In fact, without calcitonin, the IRC
control model breaks down completely.

Secondly, the model indicates that when
a large disturbance is present, e.g. calcium clear-
ance from the plasma during milk production,
the concentration of PTH should be above nor-
mal even after perfect adaptation has taken place
and plasma calcium concentration levels are
back to normal. This is not what is observed in
animal experiments (J. P. Goff, pers. comm.). In-
stead, when the plasma calcium concentration
adapts to the constant disturbance and assumes
its normal level, so does the PTH concentration.

Thirdly, the IRC model has a limited range of
operation before a bifurcation destroys the equi-
librium. Moreover, the behavior of the model is
wildly oscillatory and lightly damped even to
small step disturbances (computer simulation of
the IRC model, results not shown in this paper).
This is contrary to what is known about the
remarkable stability of the calcium homeostatic
system.
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However, we would like to emphasize that the
model and analysis developed in this work and
the work of Saunders et al. converge in that they
both provide another piece of evidence in sup-
port of an emerging theme that integral control is
a functional building block in a wide range of
physiological mechanisms, ranging from the cel-
lular level to systemic physiology. This perspect-
ive was recently discussed in the work of Yi et al.
(2000) where the necessity of integral control for
robust perfect adaptation in bacterial chemotaxis
was studied. These results as well as those re-
ported in this article seem to point to the preva-
lence of integral control in mechanisms where
physiological quantities must be maintained
within a narrow range despite internal and ex-
ternal disturbances. Further work is needed to
catalog and uncover the architecture of these
systems where integral control is at work.

The authors would like to acknowledge support by
NSF grant ECS-9457485 and Iowa State University
SPRIG grant.
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