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Abstract— This paper presents a 128×128 charge-mode CMOS
imaging sensor that computes separable transforms directly on
the focal plane. The pixel is a unique extension of the widely
reported Active Pixel Sensor (APS) cell. By capacitively coupling
across an array of such cells onto switched capacitor circuits,
computation of any unitary 2-D transform that is separable
into inner and outer products is possible. This includes the
Walsh, Hadamard and Haar basis functions. This scheme offers
several advantages including multiresolution imaging, inherent
de-noising, compressive sampling and lower integration voltage
and faster readout. The chip was implemented on a 0.5µm CMOS
process and measures 9mm2 in MOSIS’ submicron design rules.

I. INTRODUCTION

Today, the digital image sensor finds its use in almost
every field of engineering. Its applications vary from high
bandwidth line of sight laser communication to microscopic
imaging, its ubiquity ranges from being inside the human
body to frontline in a battlefield. Due to these factors, the
demand for high-resolution, low-noise imaging is expected
to grow in the next decade. Likewise, the high demand for
portable multimedia devices has imposed low power operation
constraints in imaging systems. Another key challenge is to
reduce the cost of a camera. Usually this is achieved by either
fabricating on cheaper processes or using on-sensor processing
that could supersede off the shelf CPU/DSPs.

Most commercial imagers are fabricated today on charge
coupled device (CCD) process. The main advantages of CCD
are low-noise and high fill factors. As a result very accurate,
very high resolution imaging is possible. However because
they need a programmable processor to operate with, power
consumption by a CCD is excessively large (typically in the
order of Watts). Another problem is that CCD fabrication pro-
cesses are much more expensive than digital CMOS processes.

CMOS based image sensors have been the subject of study
for several years [1], because they can provide answers to some
of the CCD limitations. Amongst several reported designs,
the passive pixel sensor (PPS) [3] is the simplest. Because
it is composed of only one transistor and a photodiode, the
PPS allows highest fill-factor (and largest integration den-
sity). However a well-known limitation in PPS architecture
is its vulnerability to noise, because the charge is extremely
sensisitive to disturbances on the column line. Active Pixel
Sensor (APS) [4] and [5] is based on a slightly different
formulation. The charge on the gate of a transistor is gradually

removed by a reverse-biased photodiode. This amount of
charge removed is directly related to the intensity of light.
The APS has been successfully used in both voltage and
current mode implementations. For voltage mode (e.g. [4]),
the output is buffered using source-follower configuration. For
current mode, the output is developed from gate-source voltage
difference across a PMOS in saturation (for instance as in [6]).

In this paper, we present the design of a CMOS imager
that capacitively adds outputs from APS cells to compute
Wavelet transform of the image (on the focal plane). Similar
work on successfully similar 2-D transforms on the focal plane
have have either used a PPS [13], were restricted to limited
block sizes [7] or involved more complicated computational
circuits [2]. In this work we first present, an full APS based
wavelet transform imager that supports basis functions that
span the full resolution of the pixel array. Experimental results
from the fabricated are then shown, along with a discussion
of applications towards compression and compressed sens-
ing [11] [12] [13].

II. ALGORITHM FOR 2D HAAR TRANSFORM

The wavelet transform has emerged as a powerful tool
in many signal and image processing applications. A three-
level two-dimensional dyadic wavelet decomposition is shown
in Fig. 1. Because of the high spatial correlation between
pixels, in practical images, most of the energy appears in
the low-pass sub-bands. Each dyadic decomposition results
in four sub-bands: HH captures diagonal edges, LH captures
vertical edges, HL captures horizontal edges and LL captures
all the low-pass energy. One popular implementation of this
decomposition involves separable 2D scheme, where wavelet
filters are applied along rows, followed by columns.

Haar is regarded as the simplest wavelet transform, because
its low-pass sub-band is the average and high-pass sub-band
is the difference of data samples. In Fig. 2 (right), Haar
coefficients for a 1D, 8-point signal are shown. The scaling
function (H0) is simply the sum of all data samples, while the
wavelet functions (H1-H7) are differences at different scales.
Similarly in Fig. 2 (left), Haar coefficients for a 2D, 4×4 image
are displayed. Pixels are added wherever plus sign appears and
subtracted where minus sign appears. Pixels in gray region do
not contribute in computation. Thus all pixels is multiplied by
either +1, −1 or 0 and then summed. Note that normalization
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Fig. 1. Three-level dyadic wavelet decomposition.

Fig. 2. Various 2-D basis functions for the transform (left) which can be
constructed from the outer product of 1D (right) signals.

is needed to make sure that dynamic range of the output
remains in limits.

III. VLSI IMPLEMENTATION

Fig. 3 shows pixel configuration for our design. The pixel
is based on the conventional APS design, however it adds
one more transistor and a linear capacitor. At the start of
computation cycle, RST (reset) goes high to charge up the gate
of transistor M2. The photodiode discharges this gate, and the
amount of discharge corresponds to the light intensity of pixel.
RS(i) is a digital signal that controls row-select operation
and is different for rows. Another important difference here
is that biasing transistor M4 is present in each pixel. For
power considerations, M4 has to be biased in sub-threshold.
Our results indicate that the range of discharge on the gate
of M2 does not have to be as large as in APS. Thus M4 can
be biased at a smaller current than for a readout transistor in
APS [8]. An M4 current of 38nA will set a lower bound on
the power consumption to be 3.1mW .

Shown in Fig. 4 is the peripheral circuit for a single column.
Assume clocks S1/H1 and S2/H2 to be non-overlapping. The
circuit consists of a popular switched capacitor amplifier. If
RS(i) is low (i.e. M3 is off) during sample operation S1,
the amplifier samples source follower output, V int

(i,j) where
subscript (i, j) denotes location of the pixel. In the hold phase
H1, if RS(i) goes high, the amount of charge transferred
from each Cpix to C1 is Cpix(V int

(i,j) − V aps). Using a very
similar argument, if RS(i) goes high during S1 and low during
H1, the amount of charge transfered is Cpix(V aps − V int

(i,j)).
If RS(i) remains high during both S1 and H1, no charge is
transfered. Therefore, if V aps is tuned to be equal to pixel
voltage when there is no light, the above equations correspond
to a multiplication by +1, −1 or 0. The output of the amplifier
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Fig. 3. Schematic of the active pixel cell. The output from pixels is
capacitively summed on wire Vpix(j) through the coupling capacitor Cpix.

Q1 (Fig. 4) can be written as

V amp
(j) = V ref +

Cpix

C1
×

X
i

(V int
(i,j) − V aps)×RS(i) (1)

In order to achieve a higher dynamic range, digital inputs
are used to program capacitor C1 to be either 4Cpix, 16Cpix

or 64Cpix. Setting C1 to 4Cpix will help resolve wavelets at
a finer scale (in extreme case, only two pixels along a column
contribute). When computing scaling function (i.e. summing
charge of all the pixels), C1 has to be 64Cpix to prevent the
output V amp

(j) to saturate.
In what has been presented so far, we compute partial

products along rows. We need to compute partial product along
columns also. This is clearly evident from Fig. 2 (left) because
haar wavelets are organized in a particular checkerboard like
fashion. Moreover, for certain coefficients some of the columns
have to be multiplied by zero. One way to achieve this is
by multiplying V amp

(j) by +1, −1 or 0 and then summing
(by capacitive sensing). We do this through complementary
signals CS(j) and CS(j) (CS is shorthand for column select)
and second-stage switched capacitor amplifier (Q2). Assuming
we are in H1 phase and S2 goes low, if CS(j) is low, we
sample V amp

(j) . After H2 goes high, if CS(j) goes high so
that V ref is connected to the bottom plate of the capacitor,
the amount of charge transferred is 4Cpix(V amp

(j) − V ref ).
Similarly, by setting CS(j) to be high during S2 and low
during H2, an equal but opposite charge transfer can be
achieved i.e. 4Cpix(V ref − V amp

(j) ). Connecting V ref to the
capacitor during S2 as well as H2 results in no charge transfer
(multiplication by zero). Therefore during H2, the output of
the amplifier Q2 is given by

Wout =
4Cpix

C2
×

X
j

(V amp
(j) − V ref )× CS(j)

Combining with (1), the above equation can be written as

Wout = V ref +
4C2

pix

C2C1

X
j

(
X

i

(V int
(i,j) − V aps)RS(i))CS(j)

Where RS(i) and CS(j) are either +1, −1 or 0, depending
upon coefficients being computed. The capacitor C2 can be
programmed to be either 16Cpix, 64Cpix or 256Cpix. Thus,
if C1 = 4Cpix and C2 = 16Cpix, a 1V variation in one of the
pixels will cause about 0.0625V variation at the output.
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Fig. 4. Schematic for the peripheral cell for each column and the second-
stage amplifier. The connection for the second stage amplifier is similar to
the one used for the pixel to the first stage where all of the outputs of the
first stage amplifier are capacitively summed.

IV. EXPERIMENTAL RESULTS AND APPLICATIONS

The fabricated image sensor was integrated in a test envi-
ronment consisting of a PCB, microcontroller for timing signal
generation and a 12-bit ADC to acquire the analog output of
the computation circuits for transfer to a PC for analysis.

A. Wavelet Transform

Figure 5 shows a sample output of the wavelet transform
where the coefficients for a 3-level dyadic Haar decomposition.
The appropriate row/column outer-product vectors for each
subband were loaded into the shift registers of the sensor from
the microcontroller’s memory and used to compute the Haar
coefficients. A test image consisting of a printed letter ’A’ was
used under normal indoor lighting conditions.

During experimental testing, it was discovered that the
readout circuit exhibited a large degree of temporal noise. The
displayed image is a 16-frame time average to improve the
clarity of the result.

In addition to the expected wavelet transformed output, it
is interesting to examine the output of the two HH subbands,
which exhibit the largest degree of fixed pattern noise (FPN).
The presence of the FPN in the HH subbands and the lack
of FPN in the HL and LH subbands implies that the greatest
contribution to mismatch is the random fabrication error of the
pixel coupling capacitor, Cpix, rather than the larger capacitors
between the row/column outer-product computational blocks.
This is useful in de-noising applications since it is expected

Fig. 5. Acquired 3-level Haar transform of the letter ’A’ from imager.
Intensity values in each subband were independently scaled to reveal the
signal. Most of the sensor noise is captured by the highest frequency subbands.

that FPN will appear in the HH subbands and can possibly be
thresholded out.

For compression applications, two approaches may be taken.
First coefficients can be acquired starting from the lowest
frequency until a certain quality point or coefficient count can
be reached. A more sophisticated approach is to intelligent
select which coefficients to acquire using a technique like
embedded zero tree coding [10]. Either case avoids having
to fully readout every single coefficient location (the entire
128× 128 array).

B. Compressive Sampling

Recent work has suggested a radically different approach
to data compression. Rather than computing standard space-
frequency transforms (DCT, Wavelet) followed by entropy
coding, compressive sampling [11] [14] suggests that for
images, a signal can be recovered from an incomplete set of
randomly selected basis functions. The advantages here is that
the data reduction occurs directly at the sensor, rather than
later in the signal processing chain, hence reducing the com-
putational load on the external processor. Unlike traditional
compression architectures, the burden of computation is now
shifted to the decoder, rather than encoder. For applications
like low power sensors, this is an advantageous tradeoff since
back end decoders are typically much more powerful and less
constrained than the front end sensing node.

Successful compressive sampling imaging applications have
used PPS sensors over smaller 16×16 blocks [13] which were
not optimized for binary coefficients (1,−1) or a mechanical
array of micro-mirrors [12]. In this section we present an
architecture for compressive sampling that utilizes a full APS
sensor.

For compressive sampling, a Walsh rather than Haar basis
was used since it consists of basis functions that span the
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Fig. 6. Reconstructed image via Compressive Sampling [14] for retaining
1/4 and 1/2 of all the possible coefficients of a Walsh transform over a 64×64
pixel region.

entire imaging array, rather than the localized features of the
Haar and is hence better suited for compressed sampling.
Random 2-D basis functions were generated by randomly
loading different combinations of 1-D basis vectors into the
row and column shift registers to construct the under-sampled
measurement matrix.

Images are reconstructed by using solvers [14] that search
for an the image that exhibits the least total variance which
fits the observations from the measurement matrix, subject to
an error factor to account for acquisition noise. Sample output
from the compressive sampling scheme is shown in Figure 6.
Due to memory and runtime limitations in the compressive
sampling reconstruction algorithm [14] the image size was
limited to a 64× 64 patch at this time.

V. CONCLUSION

We present a 128×128 CMOS sensor which directly com-
putes 2-D separable transform coefficients at the focal plane.
Table I summarizes the main features of the fabricated chip.
The image sensor computes transforms with basis functions
up to the size of the full array resolution.

While the performance of binary valued transforms (Haar,
Walsh) is typically inferior to more complex basis sets, the
tools presented are still useful for a variety of image processing
tasks like image compression via traditional transforms or
the new compressive sampling. Because these transforms
can be efficiently implemented in focal plane circuits, the
sensor is ideally suited for applications calling for low-power
electronics followed by low complexity signal processing.

TABLE I
SUMMARY OF THE CHIP CHARACTERISTICS

Technology 0.5µm CMOS 3M2P
Area 3mm× 3mm

Dimensions 128× 128
Pixel Size 17µm× 17µm
Fill factor 40%

Supply voltage 3.3V
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