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Sequence Note

A New Perspective on V3 Phenotype Prediction

SATISH PILLAL'* BENJAMIN GOOD,>* DOUGLAS RICHMAN,!? and JACQUES CORBEIL!?

ABSTRACT

The particular coreceptor used by a strain of HIV-1 to enter a host cell is highly indicative of its pathology.
HIV-1 coreceptor usage is primarily determined by the amino acid sequences of the V3 loop region of the vi-
ral envelope glycoprotein. The canonical approach to sequence-based prediction of coreceptor usage was de-
rived via statistical analysis of a less reliable and significantly smaller data set than is presently available. We
aimed to produce a superior phenotypic classifier by applying modern machine learning (ML) techniques to
the current database of V3 loop sequences with known phenotype. The trained classifiers along with the se-
quence data are available for public use at the supplementary website: http://genomiac2.ucsd.edu:8080/wet-

cat/v3.html

HE ENTRY OF HIV-1 into a host cell is a two-stage process.
First, the viral envelope glycoprotein binds to the cell sur-
face molecule CD4, inducing a conformational change in the
gpl120 ectodomain of the protein. Second, the glycoprotein
docks to a seven-transmembrane chemokine coreceptor on the
cell surface, triggering the presentation of its gp41 transmem-
brane segment. This sequence of events results in membrane
fusion and penetration of the virus into the cytosol.! The two
principal coreceptors used by HIV-1 are CXCR4 and CCRS,
members of the CXC and CC chemokine receptor families, re-
spectively 2
The particular coreceptorused by a strain of HIV-1 (CXCR4
vs. CCRS) largely defines its replication kinetics and cy-
topathology in vitro. Moreover, coreceptor usage is indicative
of the pathogenicity, tissue tropism, and transmissibility of a
virus in vivo. Unsurprisingly,the determinationof this viral phe-
notype is critical in a wide variety of HIV research contexts.
Several experiments have been conducted on HIV isolates
to pinpoint the genetic basis underlying coreceptor preference.
The generation and analysis of chimeric (recombinant) viruses
have localized the primary determinant of coreceptor usage to
the 35-amino acid V3 loop subregion of the HIV envelope gly-
coprotein3

Earlier work involving statistical analysis of V3 loop amino
acid sequences and their respective phenotypes suggested that
the presence of a positively charged residue at positions 11
and/or 25 of the V3 loop (numbered according to the North
American consensus; see Fig. 1) conferred the ability to dock
with CXCR4, while CCR5 binding is the default condition* To
date, this “charge rule” is the most accepted method of se-
quence-basedprediction. However, prediction based on this rule
does not always align with experimental determination of core-
ceptor usage.’ The inaccuracy of the charge rule is most likely
due to the comparatively sparse and unreliable data that were
available at the time of its creation. Since then, the number of
sequences with known phenotype has increased substantially,
and the laboratory-based assays used to generate the data have
improved. Another possible candidate for a deficiency in this
predictive scheme is the consideration of only 2 of the 35 avail-
able amino acid positions in the V3 loop.

Modern machine learning (ML) techniques for class predic-
tion can provide advantages over traditional statistics in terms
of their abilities to identify and exploitinteractionsbetween fea-
ture variables. In addition, the rules they generate can often be
interpreted with relative ease.>’ ML has already proven ex-
tremely useful in segregating biological sequence data into
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FIG. 1. North American V3 loop sequence with positions 11
and 25 (basis of the “charge rule”) underlined.

functional classes.®® We used a variety of ML approaches to
develop a better classifier of coreceptor usage and to assess the
impact of other V3 loop attributes on viral tropism.

All the V3 loop sequence entries containing documentation
of experimentally determined coreceptor usage were down-
loaded from the Los Alamos National Laboratory HIV Sequence
Database, and duplicate sequences were removed. V3 loops less
than 34 or more than 36 amino acids in length were deleted from
the data set in the interests of producing a relatively gap-free
alignment (Table 1). CLUSTAL W'? was used to generate an
automated multiple sequence alignment of the remaining 271
sequences, using the default parameter settings.

Classifiers were trained to make the distinction between
viruses capable of using CXCR4 as a coreceptor, versus those
that were incapable. Dual-tropic (R5X4) viruses were therefore
pooled into the X4 class. Each sample in the initial training set
included the amino acid character (or gap) at each of the 40 po-
sitions in the V3 loop alignment.

All the experiments in this analysis were conducted using
WEKA (the Waikato Environment for Knowledge Analysis),
an open source collection of data-processing and machine-
learning algorithms.” Written in Java, it runs on most platforms
and is available for free download at http:/www.cs.
waikato.ac.nz/ml/Weka/. Of the many techniques for classifi-
cation included in the WEKA package, we chose to focus on
an implementation of the Quinlan C4.5 decision tree inducer
called “j48,” an algorithm that builds rules from partial deci-
sion trees constructed with C4.5, called “PART,” and a se-
quential minimal optimization-basedimplementation of support
vector machines (SVM).!1-12

One hundred iterations of stratified 10-fold cross-validation
were used to evaluate the different classifiers and training set
compositions. For each of 100 trials, the data set was randomly
divided into 10 groups of approximately equal size and class
distribution. For each “fold,” the classifier was trained using all
but 1 of the 10 groups and then tested on the unseen group.
This procedure was repeated for each of the 10 groups. The
cross-validation score for 1 trial was the average performance
across each of the 10 training runs. The reported score is the
average across the 100 trials. The same divisions of the data set
were used for each type of classifier (including the change rule)
to allow for direct comparison.

In the first trial, we compared the abilities of four classifiers,
the charge rule, SVM, C4.5, and PART, to accurately predict
the coreceptor usage of HIV-1 V3 loop amino acid sequences.

TaABLE 1. CoMPOSITION OF DATA SET
R5 X4 R5X4
168 (62%) 103 (38%) 21 (8%)
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TABLE 2. CLASSIFIER PERFORMANCE?®

Full sequence Positions 11 & 25

Classifier (%) removed(%)
Charge rule 87.45 0

SVM 90.86 88.79
C4.5 89.51 84.54
PART 89.37 85.95

aPercent correct for 100 rounds of 10-fold cross-validation.
Values in boldface indicate a statistically significant improve-
ment over the charge rule. The default settings from WEKA
were used in all cases.

The second trial compared the performance of these classifiers
on the same data set but with positions 11 and 25 deleted. To
reiterate, positions 11 and 25 of the V3 loop constitute the en-
tire basis of prediction for the canonical charge rule predictor.
We eliminated this information from the training data for the
second trial in the interests of both informatics and biology; we
aimed to assess the capacity of machine learning to unearth
novel information content, while concomitantlyidentifyingnew
areas within the loop that influence HIV coreceptor usage.

The results presented in Table 2 indicate that we can gener-
ate a more reliable sequence-based predictor of HIV corecep-
tor usage by employing a variety of ML techniques. In addi-
tion, classifiers trained on sequences lacking positions 11 and
25 produce results competitive to the conventional method and
to classifiers constructed using the entire available feature set.
Trials conducted with a variety of different sequence attributes
resulted in fairly consistent construction of classifiers perform-
ing near 90% accuracy in cross-validation trials (data not
shown"), suggesting that information regarding coreceptor us-
age is widely distributed throughout the V3 loop.

Throughout all our trials, the SVM was consistently the best
phenotypicclassifier. Table 3 summarizes its class-specific per-
formance in cross-validation on the full sequence set.

An obviousbenefit of the conventionalcharge rule is its sim-
plicity. Implementing a simpler method may be desirable, es-
pecially if significantly more complex schemes provide only
marginally better results. In the interest of succinctness, we con-
structed decision trees using only two V3 loop attributes. The
tree in Fig. 2 was constructed with the two sequence attributes
identified as having the highest information content with regard
to coreceptor usage. Using only positions 7 and 11 (positions
8 and 12 in our alignment), we were able to automatically con-
struct a theoretical framework that consistently outperformed
the charge rule (Fig. 2). Moreover, this rule set had the second
highest cross-validation score, 89.97%, and constituted the
fourth-bestclassifier overall by correctly classifying 90.77% of
the training set.

It is worth noting that when limiting the search to predictors
formed from only two V3 positions, the combination of posi-
tions 11 and 25 does not provide the greatest information con-
tent. Position 11 is certainly the most predictive, but position

“See supplementary website: http:/genomiac2.ucsd.edu:8080Avet-
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CLASS-BASED STATISTICS FOR SUPPORT

VECTOR MACHINE ON FULL SEQUENCE SET?

Class True-positive rate False-positive rate Precision
CXCR4 0.757 0.024 0.951
CCRS 0.976 0.243 0.868

#Precision (predictive power) is equal to the number of true-positive pre-
dictions for a class divided by the number of predicted positives.

25 does not contribute much additional information (Table 2).
Surprisingly, rules generated using only position 11 result in
slightly better classification performance than rules that include
position 25 (data not shown").

A small but significant subset of the isolates within the data
set was consistently misclassified by most of the classifiers,
even when they were included in the training set. The final step
in our analysis concentrated on unearthing a common element
between those isolates that were misclassified when using the
entire data set for both training and testing. As mentioned ear-
lier, in addition to RS and X4 strains there is a third phenotypic
class of “dual-tropic” R5X4 variants that can utilize either
chemokine receptor to enter a target cell. It has been hypothe-
sized that dual-tropic viruses may represent an intermediate
evolutionary stage between full-fledged X4 strains and their
CCRS5-utilizing ancestors.!3> Our classifiers were trained to
make the distinction between viruses capable of using CXCR4,
dual-tropic viruses included, versus those that were incapable.
It is likely that dual-tropic viruses use a different “sequence
key” to unlock the X4 door than conventional (monotropic)
CXCR4-using strains, because they have retained the capacity
to bind CCRS5 as well. Therefore, these isolates may be incor-
rectly labeled as “X4 incapable” by our classification methods,
and hence contribute disproportionatelyto the various error sets.

We investigated this possibility by tallying the monotropic
and dual-tropic sequences in each error set and comparing these

numbers against the total in each category (250 monotropic and
21 dual-tropicisolates). The data in Table 4 unequivocallydem-
onstrate that dual-tropic variants are significantly overrepre-
sented in all error sets (p < 0.01, Fisher exact test), speaking
to the biological uniqueness of the R5X4 class, and to the ef-
ficacy and sensitivity of the classifiers themselves.

To determine whether there was a consistent sequence pat-
tern associated with this third phenotypicclass, each of the clas-
sifiers was implemented to classify the data into RS, X4, and
R5X4 (dual-tropic)isolates.* However, the classifiers could not
satisfactorily perform this task, likely because of the inadequate
number of available training cases in the dual-tropic category.

The two primary goals of this project were to create a bet-
ter classifier of coreceptor usage based on V3 sequence and to
identify new biologically meaningful positions within this re-
gion. Our results indicate a marginal improvement in perfor-
mance over the established charge rule, and demonstrate con-
clusively that positions within V3 other than positions 11 and
25 can be substantially informative in determining HIV phe-
notype. Furthermore, examination of the linkage between these
newly implicated positions and the two relied on by the con-
ventional classifier suggests that they contain novel, indepen-
dent information pertaining to coreceptor usage.!

*To use the SVM, the MultiClassClasifier method was invoked from
WEKA.
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FIG. 2. Decision tree constructed using C4.5 trained on positions 7 and 11 of the V3 sequence (positions 8 and 12 in the align-

ment).
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TABLE 4. MISCLASSIFICATION OF MONOTROPIC AND DUAL-TROPIC SEQUENCES

Monotropics Dual-tropics
Classification method misclassified (%) misclassified (%)
Charge rule 7 33
C4.5 6 43
PART 5 38
PART—positions 11 and 25 deleted 6 19
SVM 0 5

A limitation to classifier performance stems from the minor
subset of V3 loop sequences that violate the sequence—pheno-
type relationships exhibited by the vast majority of training
cases. We determined that a large proportion of these cases rep-
resent a third, biologically distinct phenotypic class of dual-
tropic isolates that can utilize either chemokine receptor to en-
ter a target cell. It is likely, therefore, that these errors were
reflections of a conflict between the two-way classificationtask
and the tripartite structure of the phenotypic data, rather than a
shortcoming in the classifiers themselves.

Our revisitation of the conventional prediction scheme sug-
gests that the charge rule may in fact be somewhat obsolete.
Predictions based on position 11 alone were on average more
accurate than those based on positions 11 and 25. Considering
that the statistical derivation of the charge rule was performed
several years ago, it is possible that the inclusion of position 25
reflects a sampling bias in the significantly smaller data set
available at that time.

Experiments involving mutagenesis of the HIV-1 envelope
glycoprotein have introduced the possibility that positions out-
side the V3 loop may also influence viral tropism.'* We would
like to apply the same ML techniques to systematically deter-
mine how sequence positions within the HIV-1 envelope but
outside the V3 loop subregion modulate coreceptor usage. This
will depend on the large-scale generation of full-length enve-
lope sequences with corresponding phenotypic data. In addi-
tion, as in vitro assays become more sophisticated, it should be
possible to describe coreceptor usage on a continuous scale,
rather than by categorizing the data into discrete, arbitrary
classes. This information will allow for a high-resolution map
of sequence against phenotype, whereby subtle changes in se-
quence could be predictive of minor effects on coreceptor pref-
erence.

The most significant contributions of this work are the elu-
cidation of predictive V3 positions other than positions 11 and
25, and the demonstration of the power of machine learning for
rapid knowledge discovery based on protein sequence. In an
age when sequence data are being generated at an astonishing
pace, machine learning is an invaluable tool for fluently bridg-
ing the gap between genotype and phenotype.

ACKNOWLEDGMENTS

We thank Brian Gaschen at the HIV Sequence Database (Los
Alamos, NM) for assistance in consolidating the training data.

We also extend our gratitude to Drs. Joe Wong, Simon Frost,
and Andrew Leigh-Brown for critical reviews of this manu-
script.

This work was supported by the National Institute of Allergy
and Infectious Diseases (A146237 and A147703;].C.), the Cen-
ter for AIDS Research Genomics Core Laboratory (AI36214),
the Universitywide AIDS Research Program (IS99-SD213 and
PH97-SD-201), and the San Diego Veterans Medical Research
Foundation, as well as by NIH grants AI27670, AI38858,
AI43638, and AI29164 (D.D.R.) and the San Diego Veterans
Affairs Healthcare System.

REFERENCES

1. Wyatt R and Sodroski J: The HIV-1 envelope glycoproteins: Fu-
sogens, antigens, and immunogens. Science 1998;280:1884-1888.

2. Fenyo EM, Schuitemaker H, lo\sj(j B, McKeating J, Sattentau Q,
and EC Concerted Action on HIV Variability: The history of HIV-
1 biological phenotypes past, present and future. In: Human
Retroviruses and AIDS 1997: A Compilation and Analysis of Nu-
cleic Acid and Amino Acid Sequences (Korber B, Hahn B, Foley
B, Mellors JW, Leitner T, Myers G, McCutchan F, and Kuiken
CL, eds. Theoretical Biology and Biophysics Group, Los Alamos
National Laboratory, Los Alamos, New Mexico, 1997, pp. III-
13-111-18.

3. Cheng-Mayer C, Quiroga M, Tung JW, Dina D, and Levy JA. Vi-
ral determinants of human immunodeficiency virus type 1 T-cell
or macrophage tropism, cytopathogenicity, and CD4 antigen mod-
ulation. J Virol 1990;64:4390-4398.

4. Fouchier RAM, Groenink M, Kootstra NA, Tersmette M, Huisman
HG, Miedema F, and Schuitemaker H. Phenotype-associated se-
quence variation in the third variable domain of the human immu-
nodeficiency virus type 1 gpl120 molecule. J Virol 1992;66:
3183-3187.

5. McDonald RA, Chang G, and Michael NL. Relationship between
V3 genotype, biologic phenotype, tropism, and coreceptor use for
primary isolates of human immunodeficiency virus type 1. J Hum
Virol 2001;4:179-187.

6. Mjolsness E and DeCoste D. Machine learning for science: State
of the art and future prospects. Science 2001;293:2051-2055.

7. Witten IH and Frank E. Data Mining: Practical Machine Learn-
ing Tools and Techniques with Java Implementations. Morgan
Kaufmann, San Francisco, 2000.

8. Hua S and Sun Z. Support vector machine approach for protein
subcellular localization prediction. Bioinformatics 2001;17:
721-728.

9. Resch W, Hoffman N, and Swanstrom R: Improved success phe-
notype prediction of the human immunodeficiency virus type 1



NEW PERSPECTIVE ON V3 PHENOTYPE PREDICTION

from envelope variable loop 3 sequence using neural networks. Vi-
rology 2001;288:51-62.

. Thompson JD, Higgins DG, and Gibson TJ. CLUSTAL W: Im-

proving the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties and
weight matrix choice. Nucleic Acids Res 1994;22:4673-4680.

. Quinlan JR. C4.5: Programs for Machine Learning. Morgan Kauf-

mann, San Francisco, 1993.

. Vapnik V. The Nature of Statistical Learning Theory. Springer-

Verlag, New York, 1995.

. Lu Z, Berson JF, Chen Y, Turner JD, Zhang T, Sharron M, Jenks

MH, Wang Z, Kim J, Rucker J, Hoxie JA, Peiper SC, and Doms
RW. Evolution of HIV-1 coreceptor usage through interactions
with distinct CCRS5 and CXCR4 domains. Proc Natl Acad Sci USA
1997,94:6426-6431.

149

14. Rizzuto CD, Wyatt R, Hernandez-Ramos N, Sun Y, Kwong PD,

Hendrickson WA, and SodroskiJ. A conserved HIV gp120 glyco-
protein structure involved in chemokine receptor binding. Science
1998;280:1949-1953.

Address reprint requests to:

Satish Pillai

University of California, San Diego
9500 Gilman Drive

Stein Clinical Research Bldg. Room 327
Mail Code 0679

La Jolla, California 92093

E-mail: satish@biomail.ucsdedu



