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Effects of Anatomic Compartmentalization on HIV-1 Evolution 

by 

Satish Kumar Pillai 

Doctor of Philosophy in Biology 

University of California, San Diego, 2005 

Douglas D. Richman, Chair 

 

Human immunodeficiency virus Type 1 (HIV-1) resides in a wide variety of 

tissues including the brain, blood, lung, spleen, lymph nodes, and genital tract within 

infected individuals.  Each anatomical niche is characterized by region-specific 

immunological surveillance, host cell characteristics, and antiretroviral drug 

penetration.  Several reports suggest that the trafficking of virus between anatomic 

compartments is minimal and infrequent.  Therefore, it is expected that HIV should 

evolve independently in each anatomic compartment, adapting to local immunologic, 

cellular, and pharmacokinetic characteristics.  

The goal of this dissertation is to assess the degree of viral 

compartmentalization between tissues, and furthermore, to identify viral genetic 

characteristics that are specific to particular cell types and organs.  The first chapter is 

a brief introduction to the basic biology of HIV, focusing on epidemiology and 

evolution.  The second chapter is an exploration of the genetic determinants 

underlying differential HIV-1 chemokine receptor usage (CCR5 vs. CXCR4), which 
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largely defines a strain’s cellular tropism.  In chapter three, the extent of natural 

selection on CCR5- and CXCR4-using HIV-1 strains is assessed using a variety of 

analytical techniques, focusing mainly on the deficiencies of the recently described 

“codon volatility” method.  The fourth chapter investigates the biology of HIV-1 

transmission by systematically comparing the population genetics of semen- and blood 

plasma-derived HIV variants, using previously published HIV-1 envelope RNA 

sequences.  In chapter five, HIV neurotropism and neurovirulence are explored by 

generating and analyzing several hundred envelope sequences representing 

cerebrospinal fluid- (CSF) and plasma-derived viruses from paired CSF and plasma 

samples of eighteen chronically infected donors with available neuropsychiatric data.  

Finally, in chapters six and seven, the in vitro phenotypic correlates of HIV 

neurotropism are examined by comparing the effects of CSF- and plasma-derived 

HIV-1 Nef proteins on major histocompatibility class I (MHC-I) expression in the host 

cell.  In addition, preliminary data on the in vitro infection of fetal brain aggregates are 

presented, as a model for studying HIV neuropathogenesis in a controlled laboratory 

setting. 

In summary, the data presented within this dissertation support the theory that 

distinct viral genetic and evolutionary characteristics are associated with 

compartment-specific HIV-1 populations. 
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Chapter 1 

Introduction  
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HIV-1 AND THE AIDS EPIDEMIC 

Human immunodeficiency virus type I (HIV-1) is the etiologic agent of 

acquired immune deficiency syndrome (AIDS).  To date, AIDS has taken the lives of 

over 20 million people worldwide, an estimated 40 million people are living with 

HIV/AIDS currently, and more than 16,000 are infected with HIV each day (29).  

Despite over two decades of intense research by clinicians and basic scientists, the 

AIDS epidemic is still spreading in an uncontrolled fashion across the globe (Fig. 1).  

To date, there is no cure, and no effective vaccine. 

The origin of HIV/AIDS is a topic of great interest to researchers and general 

public alike.  HIV-1 belongs to the lentiviral genus of the family retroviridae.  The 

lentiviral clade includes HIV-2, simian, feline and bovine immunodeficiency viruses, 

visna virus, and equine infectious anemia virus (3).  Phylogenetic analysis of the 

lentiviral lineage has revealed that the virus most closely resembling HIV-1 is the 

simian immunodeficiency virus (SIV) strain “SIVcpz” that infects the African Pan 

troglodytes troglodytes chimpanzee subspecies (4)(Fig. 2).  This has been interpreted 

as compelling evidence that HIV-1 entered the human population via zoonotic cross-

species transmission from an infected chimpanzee (or chimpanzees).  HIV-2, on the 

other hand, is most closely related to the SIV strain “SIVsm” that infects sooty 

mangabeys and has been less of a public health concern due to its relatively attenuated 

pathogenicity and apparent confinement to West Africa.  It has been estimated based 

on inferred rates of molecular evolution that the ancestor of the HIV-1 M group (the 

subgroup principally responsible for the current pandemic) entered the human 
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population around 1930, with an error window of 10 years in either direction (12).  

Although more scandalous scenarios have been proposed, the most plausible 

mechanism of zoonotic transfer involves the consumption of infected chimpanzee 

meat (“bushmeat”) by humans, which is a relatively common practice in equatorial 

Africa (6). 

It is worth mentioning that the vast majority of HIV research has been focused 

on HIV-1 subtype “B”, a single subclade of the M group, due to its prevalence in the 

Americas and Europe where most of the research is financed and conducted.  Subtype 

B is one out of over 10 circulating HIV-1 M group subtypes, and represents only a 

fraction of worldwide diversity.  Subtype C is currently the driving force behind the 

epidemic, covering large stretches of Africa and India where HIV prevalence 

sometimes surpasses 25% (29).  Moreover, much of the basic research has involved 

particular subtype B strains that are adapted to the transformed cell lines commonly 

used in a laboratory setting.  Although to date there have not been any concrete 

phenotypic or pathogenic differences identified between subtype designations (which 

are based purely on genetic distance), it is likely that our window into HIV biology 

suffers from some degree of myopia. 

HIV-1 EVOLUTION AND GENETIC DIVERSITY 

HIV-1 evolves via two distinct mechanisms: mutation and recombination.  

RNA viruses in general tend to have relatively high mutation rates, and HIV is by no 

means an exception with its estimated rate of 5x10-5 mutations/site/generation, owing 

to the poor fidelity of reverse transcriptase and a lack of proofreading machinery (14).  



   

 

4

Considering that the genome itself is approximately 10 kilobases long (Fig. 3), it is 

expected that each progeny virus differs from its parent by one nucleotide on average 

due to mutation alone.   

HIV-1, like all retroviruses, is diploid and contains two copies of the viral 

RNA genome within each particle (Fig. 3).  If a host cell is infected with multiple 

viruses, the possibility exists that heterozygous virions will be formed and 

recombinants will be generated during reverse transcription (7).  Recombination is 

rampant within HIV populations, and several reports suggest that it may be a much 

more powerful and relevant force in shaping HIV evolutionary patterns than mutation.  

Zhuang et al have observed up to 2.8 crossovers per replication cycle within their in 

vitro system (32).  This rate is reflected in the ever growing number of circulating 

intersubtype recombinant viruses (approaching 20 at the time of this publication), 

which emerge in regions where multiple subtypes overlap geographically and 

demographically (18).  

The true magnitude of these evolutionary processes becomes apparent when 

discussed in the context of HIV population biology.  Stochastic models suggest that 

1010 viral particles are produced each day within an infected individual, and generation 

time is in the neighborhood of 1.8 days (19).  This rate of production and turnover 

coupled with the aforementioned rates of recombination and mutation allow the virus 

to explore vast reaches of sequence space in short periods of time.  As a result, env 

genetic diversity within the HIV-1 M group is as high as 35% (23).  Viral diversity 

within a single individual may reach levels of 10% or more during chronic infection 



   

 

5

(25).  These numbers are in striking contrast to the rates of evolution and 

diversification observed within influenza virus populations; worldwide influenza 

hemaglutinnin (HA) diversity at any given time is usually lower than observed HIV-1 

env diversity within a single city (11) (Fig. 6). 

 The rapid evolution and diversification of HIV-1 is of tremendous 

consequence to its clinical management.  One of the greatest challenges facing the 

design of an effective vaccine is genetic diversity (11).  Designing an immunogen that 

will elicit a vigorous antiviral response against such a wide spectrum of circulating 

variants is a daunting task, especially when numerous studies demonstrate that a single 

amino acid substitution within an antigenic sequence is often enough to abrogate a 

cellular or humoral immune response.  For similar reasons, the natural anti-HIV 

immune responses mounted by an infected host are usually insufficient in the long run.  

Data from studies involving humans and nonhuman primates demonstrate that when a 

viral antigenic sequence (epitope) becomes the target of neutralizing anibodies or 

cellular immunity within an infected host, the epitope accumulates mutations that 

allow the virus to escape from these responses (5).  The host, in turn, may generate 

new antibodies or T cells that recognize the mutant viral sequence.  The virus, once 

again, usually escapes via mutation.  This game of cat-and-mouse may persist for 

several years, although an untreated host typically loses control eventually, perhaps 

due to the extraordinary rate at which HIV generates genetic variation.  

 Antiretroviral drug therapy suffers at the hands of viral evolution as well.  The 

administration of a single drug (e.g. AZT) is almost universally insufficient; HIV 
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rapidly accumulates mutations that render it resistant to the drug, although these 

mutations often come at a significant fitness cost to the virus (8).  However, resistant 

strains have been catalogued that are comparable to wildtype fitness in the absence of 

drug due to the acquisition of compensatory mutations that neutralize the deficits 

associated with the primary resistance mutations (27).  As a result clinicians have 

resorted to flooding infected patients with multiple drug cocktails that target HIV at 

several stages of its life cycle.  Evolving resistance to multiple classes of 

antiretrovirals simultaneously is much more difficult for the virus, although evolution 

and transmission of multi-drug resistant strains has been documented in recent years 

(22).  Even in the absence of multi-drug resistance, the drugs themselves take a 

significant toll on patients in the long run (patients are often placed on six drugs or 

more, and interactions and additive effects are not uncommon).  The toxicity of 

antiretrovirals manifests itself in several forms, including pain, fatigue, nausea, 

lipodystrophy, and neurological syndromes (17). 

 Another intriguing facet of HIV epidemiologic and intrapatient evolution 

(which we will revisit in the next chapter) arises from the fact that HIV-1 can exploit 

different chemokine receptors to gain entry into host cells (Fig. 4).  Although several 

potential coreceptors have been identified in laboratory experiments, CCR5 and 

CXCR4 appear to be most widely used by primary HIV-1 isolates.  The coreceptor 

usage of an HIV strain (CCR5 vs. CXCR4) largely defines its cytopathology, 

replication kinetics, and tissue tropism in in vitro culture.  CXCR4-using (X4) isolates 

tend to replicate rapidly, induce the formation of syncytia (giant multinucleated cells), 
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and have the capacity to infect transformed T cell lines.  CCR5-using (R5) isolates, on 

the other hand, replicate slowly, do not induce syncytia in T cell lines, and can often 

infect monocyte-derived macrophages in a laboratory setting (2).  Coreceptor usage is 

also indicative of in vivo pathogenicity and transmissibility.  CXCR4 strains are 

associated with more rapid progression to AIDS, in line with their accelerated 

replication rates in vitro (13).  It has been observed that HIV-infected individuals 

experiencing opportunistic infections associated with end-stage disease (Fig. 5) are 

several times more likely to harbor a syncitium-inducing (X4) strain than 

asymptomatic patients (21).  In addition, people homozygous for a common 32 base-

pair deletion in the gene encoding the CCR5 receptor may only be productively 

infected by CXCR4-using HIV variants (15).  Coreceptor usage also modulates viral 

access to various compartments within the human body, due to tissue-specific cellular 

characteristics.  For example, HIV infection in the central nervous system is highly 

correlated with the preferential usage of CCR5, while the thymus is mainly colonized 

by X4 variants (10, 26).  In light of the AIDS epidemic as a whole, the majority of 

HIV-positive individuals are initially infected with R5 HIV strains, suggesting that 

there may be a selective advantage of such variants with respect to sexual, parenteral, 

and vertical transmission (30).   

As my chosen title indicates, this dissertation focuses on one particular aspect 

of HIV evolutionary biology: the effects of anatomic compartmentalization on HIV-1 

evolution.  Let me begin by listing a few definitions of the term “compartment”: 
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• “One of the parts or spaces into which an area is subdivided.” (dictionary.com) 

• “. . . an anatomical site in which the virus. . . evolves distinctively from other 

anatomical sites. . . because of differences between the major cell types sustaining 

viral replication.” (9) 

• “In vivo virologic compartments are cell types or tissues between which there is a 

restriction of virus flow. . .” (16) 

• The particular area within a habitat occupied by an organism (ecological definition 

of “niche”). (dictionary.com) 

The meaning of the word compartment as I use it within this dissertation is 

essentially an amalgam of all four definitions listed above.  The presence of HIV 

(RNA and DNA) has been catalogued in several anatomic compartments within 

human hosts, including the brain, blood, lung, spleen, lymph nodes, and genital tract.  

Each anatomical niche is characterized by region-specific immunological surveillance, 

host cell characteristics, and antiretroviral drug penetration.  Several reports suggest 

that the trafficking of virus between anatomic compartments is minimal and 

infrequent.  Therefore, it is expected that HIV should evolve independently in each 

anatomic compartment, adapting to local immunologic, cellular, and pharmacokinetic 

characteristics. The goal of this dissertation is to assess the degree of viral 

compartmentalization between tissues, and furthermore, to identify viral genetic 

characteristics that are specific to particular cell types and organs.   

As a final point, investigating the effects of anatomic compartmentalization on 

HIV-1 evolution is not a purely academic pursuit.  Viral compartmentalization has 
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significant consequences in the clinical world.  For instance, several sites (e.g. central 

nervous system) are characterized by suboptimal drug penetration and act as sanctuary 

sites, compromising antiretroviral therapy (28).  Another example involves HIV 

transmission; the vast majority of HIV-1 infections result from exposure to virus in 

male genital secretions (20).  Therefore, cataloguing the specific genotypic and 

phenotypic characteristics of virus in the male genital tract (and genital secretions) 

may be crucial in designing an effective prophylactic vaccine that selectively targets 

transmitted HIV-1 variants.  My sincerest hope is that the information contained 

within the next couple of hundred pages will shed some light on the relationship 

between anatomic compartment and viral genetics that will eventually have some 

beneficial clinical impact. 
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Figure 1: Prevalence of HIV infection on a continent-by –continent basis across the 
world (World Health Organization, 2003) 
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Figure 2: Phylogenetic tree of the primate lentiviral subclade of retroviruses.  Scale 
bar represents 10% genetic distance. 
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Figure 3: Virion structure and genomic organization of HIV-1.  (Top) Schematic of 
the mature HIV-1 virion (1).  The packaging of two copies of the viral RNA genome 
in each particle allows for viral recombination to occur during each replicative cycle. 
(Bottom) Map of the ~9.8 kb HIV-1 genome.  A total of nine viral genes are encoded 
(gag, pol, vif, vpr, tat, rev, vpu, env, and nef).  Gag, pol, and env are the defining 
features of the retroviral family, encoding capsid structural proteins, replicative 
enzymes, and surface glycoproteins, respectively. 
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Figure 4: HIV-1 life cycle (31). HIV primarily infects CD4+ T cells, macrophages, 
and dendritic cells.  Initial infection requires the engagement of the viral envelope 
glycoprotein to the CD4. receptor.  Secondary attachment to a chemokine coreceptor 
(typically CCR5 or CXCR4) permits membrane fusion and entry into the host cell.  
Following entry, the RNA genome contained in the viral particle is reverse 
transcribed.  The viral DNA genome is then integrated into the host cellular DNA 
backbone, at which point viral proteins will be transcribed and translated by the host 
cellular machinery.  Newly synthesized viral components are packaged at the plasma 
membrane, and then bud from the cell to produce a round of infectious viral progeny 
particles. 
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Figure 5: Natural history of HIV-1 infection (24).  Blue line represents viral load 
(RNA copies/ml), and yellow line represents CD4+ cell counts.  Newly infected 
individuals are typically characterized by aggressive primary viremia during which 
viral titres may exceed 106 particles/ml.  Once the host immune response begins to 
combat the infection, viral titres rapidly drop down to a set point which is usually 
orders of magnitude below peak primary viremia concentration.  Chronic infection is 
characterized by perpetually dropping CD4+ counts and a gradual increase in viral 
load.  End-stage disease (AIDS) is reached when CD4+ counts fall below 200 cells 
/ml, leaving the host vulnerable to opportunistic infections.  The time span between 
initial infection and death varies dramatically between untreated individuals, most 
likely due to variation in host genotype. 
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Figure 6: Comparison of genetic diversity within HIV-1 and influenza.  Scale bar 
represents 10% genetic distance (Kindly provided by Dr. Bette Korber, Los Alamos 
National Lab). 
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Chapter 2 

A New Perspective on V3 Phenotype Prediction 
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ABSTRACT 

The particular coreceptor used by a strain of HIV-1 to enter a host cell is 

highly indicative of its pathology.  HIV-1 coreceptor usage is primarily determined by 

the amino acid sequence of the V3 loop region of the viral envelope glycoprotein.  The 

canonical approach to sequence-based prediction of coreceptor usage was derived via 

statistical analysis of a less reliable and significantly smaller data set than what is 

presently available.  We aimed to produce a superior phenotypic classifier by applying 

modern machine learning (ML) techniques to the current database of V3 loop 

sequences with known phenotype.  The trained classifiers along with the sequence 

data are available for public use at the supplementary website: 

http://genomiac2.ucsd.edu:8080/wetcat/v3.html. 

INTRODUCTION 

The entry of HIV-1 into a host cell is a two-stage process.  First, the viral 

envelope glycoprotein binds to the cell surface molecule CD4, inducing a 

conformational change in the gp120 ectodomain of the protein.  Second, the 

glycoprotein docks to a seven-transmembrane chemokine coreceptor on the cell 

surface, triggering the presentation of its gp41 transmembrane segment.  This 

sequence of events results in membrane fusion and penetration of the virus into the 

cytosol (14).  The two principal coreceptors used by HIV-1 are CXCR4 and CCR5, 

members of the CXC and CC chemokine receptor families, respectively (2). 
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The particular coreceptor used by a strain of HIV-1 (CXCR4 vs. CCR5) 

largely defines its replication kinetics and cytopathology in vitro.  Moreover, 

coreceptor usage is indicative of the pathogenicity, tissue tropism, and transmissibility 

of a virus in vivo.  Unsurprisingly, the determination of this viral phenotype is critical 

in a wide variety of HIV research contexts.  

Several experiments have been conducted on HIV isolates to pinpoint the 

genetic basis underlying coreceptor preference.  The generation and analysis of 

chimeric (recombinant) viruses have localized the primary determinant of coreceptor 

usage to the 35 amino acid V3 loop subregion of the HIV envelope glycoprotein (1).  

Earlier work involving statistical analysis of V3 loop amino acid sequences 

and their respective phenotypes suggested that the presence of a positively charged 

residue at positions 11 and/or 25 of the V3 loop (numbered according to the North 

American consensus; see Fig. 1) conferred the ability to dock with CXCR4, while 

CCR5 binding is the default condition (3).  To date, this “charge rule” is the most 

accepted method of sequence-based prediction.  However, prediction based on this 

rule does not always align with experimental determination of coreceptor usage (6).  

The inaccuracy of the charge rule is most likely due to the comparatively sparse and 

unreliable data that were available at the time of its creation.  Since then, the number 

of sequences with known phenotype has increased substantially, and the laboratory-

based assays used to generate the data have improved.  Another possible candidate for 

a deficiency in this predictive scheme is the consideration of only 2 of the 35 available 

amino acid positions in the V3 loop.  
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Modern machine learning (ML) techniques for class prediction can provide 

advantages over traditional statistics in terms of their abilities to identify and exploit 

interactions between feature variables. In addition, the rules they generate can often be 

interpreted with relative ease (7,13).  ML has already proven extremely useful in 

segregating biological sequence data into functional classes (4,9).  We used a variety 

of ML approaches to develop a better classifier of coreceptor usage and to assess the 

impact of other V3 loop attributes on viral tropism.  

MATERIALS AND METHODS 

All the V3 loop sequence entries containing documentation of experimentally 

determined coreceptor usage were downloaded from the Los Alamos National 

Laboratory HIV Sequence Database, and duplicate sequences were removed.  V3 

loops less than 34 or more than 36 amino acids in length were deleted from the data 

set in the interests of producing a relatively gap-free alignment (Table 1).  CLUSTAL 

W (11) was used to generate an automated multiple sequence alignment of the 

remaining 271 sequences, using the default parameter settings.  

Classifiers were trained to make the distinction between viruses capable of 

using CXCR4 as a coreceptor, versus those that were incapable. Dual-tropic (R5X4) 

viruses were therefore pooled into the X4 class.  Each sample in the initial training set 

included the amino acid character (or gap) at each of the 40 positions in the V3 loop 

alignment.  

All the experiments in this analysis were conducted using WEKA (the Waikato 

Environment for Knowledge Analysis), an open source collection of data-processing 
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and machine-learning algorithms (13).  Written in Java, it runs on most platforms and 

is available for free download at http://www.cs.waikato.ac.nz/ml/weka.  Of the many 

techniques for classification included in the WEKA package, we chose to focus on an 

implementation of the Quinlan C4.5 decision tree inducer called “j48,” an algorithm 

that builds rules from partial decision trees constructed with C4.5, called “PART,” and 

a sequential minimal optimization-based implementation of support vector machines 

(SVM) (8,12). 

One hundred iterations of stratified 10-fold cross-validation were used to 

evaluate the different classifiers and training set compositions.  For each of 100 trials, 

the data set was randomly divided into 10 groups of approximately equal size and 

class distribution.  For each “fold,” the classifier was trained using all but 1 of the 10 

groups and then tested on the unseen group.  This procedure was repeated for each of 

the 10 groups.  The cross-validation score for 1 trial was the average performance 

across each of the 10 training runs.  The reported score is the average across the 100 

trials.  The same divisions of the data set were used for each type of classifier 

(including the charge rule) to allow for direct comparison. 

RESULTS AND DISCUSSION  

In the first trial, we compared the abilities of four classifiers, the charge rule, 

SVM, C4.5, and PART, to accurately predict the coreceptor usage of HIV-1 V3 loop 

amino acid sequences.  The second trial compared the performance of these classifiers 

on the same data set but with positions 11 and 25 deleted.  To reiterate, positions 11 

and 25 of the V3 loop constitute the entire basis of prediction for the canonical charge 
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rule predictor.  We eliminated this information from the training data for the second 

trial in the interests of both informatics and biology; we aimed to assess the capacity 

of machine learning to unearth novel information content, while concomitantly 

identifying new areas within the loop that influence HIV coreceptor usage.  

The results presented in Table 2 indicate that we can generate a more reliable 

sequence-based predictor of HIV coreceptor usage by employing a variety of ML 

techniques.  In addition, classifiers trained on sequences lacking positions 11 and 25 

produce results competitive to the conventional method and to classifiers constructed 

using the entire available feature set.  Trials conducted with a variety of different 

sequence attributes resulted in fairly consistent construction of classifiers performing 

near 90% accuracy in cross-validation trials (data not shown), suggesting that 

information regarding coreceptor usage is widely distributed throughout the V3 loop.  

Throughout all our trials, the SVM was consistently the best phenotypic 

classifier.  Table 3 summarizes its class-specific performance in cross-validation on 

the full sequence set. 

An obvious benefit of the conventional charge rule is its simplicity. 

Implementing a simpler method may be desirable, especially if significantly more 

complex schemes provide only marginally better results.  In the interest of 

succinctness, we constructed decision trees using only two V3 loop attributes.  The 

tree in Fig. 2 was constructed with the two sequence attributes identified as having the 

highest information content with regard to coreceptor usage.  Using only positions 7 

and 11 (positions 8 and 12 in our alignment), we were able to automatically construct 
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a theoretical framework that consistently outperformed the charge rule (Fig. 2).  

Moreover, this rule set had the second highest cross-validation score, 89.97%, and 

constituted the fourth-best classifier overall by correctly classifying 90.77% of the 

training set.  

It is worth noting that when limiting the search to predictors formed from only 

two V3 positions, the combination of positions 11 and 25 does not provide the greatest 

information content.  Position 11 is certainly the most predictive, but position 25 does 

not contribute much additional information (Table 2).  Surprisingly, rules generated 

using only position 11 result in slightly better classification performance than rules 

that include position 25 (data not shown).  

A small but significant subset of the isolates within the data set was 

consistently misclassified by most of the classifiers, even when they were included in 

the training set.  The final step in our analysis concentrated on unearthing a common 

element between those isolates that were misclassified when using the entire data set 

for both training and testing.  As mentioned earlier, in addition to R5 and X4 strains 

there is a third phenotypic class of “dual-tropic” R5X4 variants that can utilize either 

chemokine receptor to enter a target cell.  It has been hypothesized that dual-tropic 

viruses may represent an intermediate evolutionary stage between full-fledged X4 

strains and their CCR5-utilizing ancestors (5).  Our classifiers were trained to make 

the distinction between viruses capable of using CXCR4, dual-tropic viruses included, 

versus those that were incapable.  It is likely that dual-tropic viruses use a different 

“sequence key” to unlock the X4 door than conventional (monotropic) CXCR4-using 
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strains, because they have retained the capacity to bind CCR5 as well.  Therefore, 

these isolates may be incorrectly labeled as “X4 incapable” by our classification 

methods, and hence contribute disproportionately to the various error sets.  

We investigated this possibility by tallying the monotropic and dual-tropic 

sequences in each error set and comparing these numbers against the total in each 

category (250 monotropic and 21 dual-tropic isolates).  The data in Table 4 

unequivocally demonstrate that dual-tropic variants are significantly overrepresented 

in all error sets (p<0.01, Fisher exact test), speaking to the biological uniqueness of the 

R5X4 class, and to the efficacy and sensitivity of the classifiers themselves.  

To determine whether there was a consistent sequence pattern associated with 

this third phenotypic class, each of the classifiers was implemented to classify the data 

into R5, X4, and R5X4 (dual-tropic) isolates.  However, the classifiers could not 

satisfactorily perform this task, likely because of the inadequate number of available 

training cases in the dual-tropic category.  

The two primary goals of this project were to create a better classifier of 

coreceptor usage based on V3 sequence and to identify new biologically meaningful 

positions within this region.  Our results indicate a marginal improvement in 

performance over the established charge rule, and demonstrate conclusively that 

positions within V3 other than positions 11 and 25 can be substantially informative in 

determining HIV phenotype.  Furthermore, examination of the linkage between these 

newly implicated positions and the two relied on by the conventional classifier 
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suggests that they contain novel, independent information pertaining to coreceptor 

usage. 

A limitation to classifier performance stems from the minor subset of V3 loop 

sequences that violate the sequence-phenotype relationships exhibited by the vast 

majority of training cases.  We determined that a large proportion of these cases 

represent a third, biologically distinct phenotypic class of dual-tropic isolates that can 

utilize either chemokine receptor to enter a target cell.  It is likely, therefore, that these 

errors were reflections of a conflict between the two-way classification task and the 

tripartite structure of the phenotypic data, rather than a shortcoming in the classifiers 

themselves.  

Our revisitation of the conventional prediction scheme suggests that the charge 

rule may in fact be somewhat obsolete.  Predictions based on position 11 alone were 

on average more accurate than those based on positions 11 and 25.  Considering that 

the statistical derivation of the charge rule was performed several years ago, it is 

possible that the inclusion of position 25 reflects a sampling bias in the significantly 

smaller data set available at that time. 

Experiments involving mutagenesis of the HIV-1 envelope glycoprotein have 

introduced the possibility that positions outside the V3 loop may also influence viral 

tropism (10).  We would like to apply the same ML techniques to systematically 

determine how sequence positions within the HIV-1 envelope but outside the V3 loop 

subregion modulate coreceptor usage.  This will depend on the large-scale generation 

of full-length envelope sequences with corresponding phenotypic data.  In addition, as 
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in vitro assays become more sophisticated, it should be possible to describe coreceptor 

usage on a continuous scale, rather than by categorizing the data into discrete, 

arbitrary classes.  This information will allow for a high-resolution map of sequence 

against phenotype, whereby subtle changes in sequence could be predictive of minor 

effects on coreceptor preference. 

The most significant contributions of this work are the elucidation of predictive 

V3 positions other than positions 11 and 25, and the demonstration of the power of 

machine learning for rapid knowledge discovery based on protein sequence.  In an age 

when sequence data are being generated at an astonishing pace, machine learning is an 

invaluable tool for fluently bridging the gap between genotype and phenotype. 
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FIGURES AND TABLES 

 

 

 

Table 1: Composition of dataset 

R5 X4 R5X4 

168 (62%) 103 (38%) 21 (8%) 
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Table 2: Classifier performance.  Percent correct for 100 rounds of 10-fold cross-
validation.  Values in boldface indicate a statistically significant improvement over the 
charge rule.  The default settings from WEKA were used in all cases. 
 

Classifier Full Sequence 11&25 removed 
Charge 87.45% 0 
SVM 90.86% 88.79%  
C4.5 89.51% 84.54%  

PART 89.37% 85.95%  
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Table 3: Class-based statistics for the Support Vector Machine on the full sequence 
set.  Precision (predictive power) is equal to the number of true positive predictions for 
a class divided by the number of predicted positives. 
 

Class True- Positive Rate False-Positive Rate Precision 

CXCR4 0.757 0.024 0.951 

CCR5 0.976 0.243 0.868 
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Table 4: Misclassification of mono- and dual-tropic sequences. 
 

 

 

 

 
 
 
 

 
 
 
 
 
 
 
 

  

Classification method % of mono-tropics misclassified % of dual-tropics misclassified 

Charge rule 7 33 

C4.5 6 43 

PART 5 38 

PART-no 11&25 6 19 

SVM 0 5 
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Figure 1: North American V3 loop sequence with positions 11 and 25 (basis of the 
“charge rule”) underlined. 

ctrpnnntrksihigpgrafytageiigdirqahc 



   

 

36

 

 

 

 

 

 

 

 

 

Figure 2: Rule set constructed using C4.5 trained on positions 7 and 11 of the V3 
sequence (8 and 12 in the alignment). 
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Chapter 3 

“Codon Volatility” Does Not Reflect Selective Pressure on the HIV-1 Genome 
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ABSTRACT 

Codon volatility is defined as the proportion of a codon’s point-mutation 

neighbors that encode different amino acids.  The cumulative volatility of a gene in 

relation to its associated genome was recently reported to be an indicator of selection 

pressure.  We used this approach to measure selection on all available full-length HIV-

1 subtype B genomes in the Los Alamos HIV Sequence Database, and compared these 

estimates against those obtained via established likelihood- and distance-based 

comparative methods.  Volatility failed to correlate with the results of any of the 

comparative methods demonstrating that it is not a reliable indicator of selection 

pressure. 

 

 
Keywords: HIV, codon volatility, selective pressure, evolution 

 

INTRODUCTION 

Natural selection is defined as the process resulting in the evolution of 

organisms best adapted to their environment (18).  Measuring natural selection 

(positive and negative) across the HIV-1 genome is of tremendous interest to 

theoreticians and clinicians alike.  Evidence of positive selection obtained via 

nucleotide sequence analysis likely reflects Darwinian adaptation of the virus in 

response to environmental pressure (37).  Cellular and humoral immunity, host-

generated antiviral factors such as APOBEC3G, and antiretroviral drug therapy are all 
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purported to contribute to this pressure and select for adaptive amino acid substitutions 

in the HIV genome.  Evidence of negative selection, on the other hand, reflects the 

inflexibility of amino acid sequence resulting from functional constraint.  The 

detection and accurate empirical assessment of both processes are critical to the 

clinical management of HIV infection.  Positive selection detection can provide us a 

window into the evolution of immunologic escape and drug resistance, while negative 

selection can provide relatively immutable targets for possible therapeutic intervention 

(28). 

Natural selection of protein-coding genes is typically assessed by comparing at 

least two homologous nucleotide sequences.  Positive selection is usually defined as 

having more nonsynonymous substitutions per nonsynonymous site (dN) than 

synonymous substitutions per synonymous site (dS), while negative selection is 

defined as the converse (19).  Plotkin et al recently described a novel method to detect 

positive selection using only a single genome sequence (26).  This approach is based 

entirely on the concept of differential “codon volatility”, described as the probability 

that a point mutation within a codon results in an amino acid change.  For example, 

the triplets AGA and CGA both encode arginine.  The codon AGA is assigned a 

volatility of 0.75, since 6/8 point mutations in AGA result in an amino acid change, 

while CGA is assigned a lower volatility of 0.5, because only 4/8 mutations are 

nonsynonymous.  The method proposed by Plotkin and colleagues rests on the 

assumption that regions undergoing extensive amino acid substitution should on 

average contain an excess of highly volatile codons in comparison to the genome at 



   

 

40

large.  In essence, a highly volatile codon is regarded as fossil evidence of a recent 

episode of positive Darwinian selection. 

Although the notion of using a single sequence to detect selection may be 

attractive to many investigators, there are concerns about the volatility approach 

arising from the very nature of the genetic code itself.  Mean codon volatilites for each 

amino acid vary considerably (from 0.653 for leucine to 1.0 for the non-degenerate 

methionine and tryptophan).  As a result, a gene’s observed volatility is greatly 

influenced by its amino acid composition (6).  Controlling for overall amino acid 

composition does not adequately solve this problem, since codons for only 4 out of the 

20 amino acids exhibit any variation in volatility whatsoever.  The frequency of these 

four amino acids (arginine, glycine, leucine, and serine) inevitably has a 

disproportionate effect on a gene’s adjusted relative volatility (P value).   

An additional caveat stems from the observation that GC content and codon 

usage may vary considerably within genomes due to factors unrelated to selection at 

the protein level (32,40).  These intragenomic fluctuations are often driven by the 

effects of nucleotide sequence on DNA or RNA structure (2), as well as the relative 

abundance of transfer RNA molecules which modulate the rate at which a given codon 

is translated (20).  Nevertheless, Plotkin et al demonstrate that volatility P values and 

dN/dS estimates obtained using comparative methods align quite well in their test 

cases of M. tuberculosis and P. falciparum (26).  In this study, we apply the codon 

volatility approach to measure selection on the HIV-1 genome, and systematically 



   

 

41

compare this technique against established maximum likelihood- and distance-based 

comparative methods. 

MATERIALS AND METHODS 

Acquisition and preparation of sequence data.  All available full-length 

subtype B HIV-1 genomes in the Los Alamos National Laboratory HIV Sequence 

Database were downloaded and aligned using Multalin (5).  Sequences containing 

frameshifts, premature stop codons, or ambiguities were removed from the data set. 

Open reading frames for the remaining 92 sequences were determined for gag, 

protease, reverse transcriptase, integrase, env, and nef. These coding regions were then 

extracted from each sequence and aligned using Clustal X (36), with default gap 

parameters and the “DNA 5-0” substitution matrix. Subsequent manual aligning was 

performed using the Se-Al sequence alignment editor (27).  All gene regions 

associated with overlapping reading frames were deleted from the data sets.  Sequence 

alignments are available for download at: http://supersatish.com/volatility.  Genbank 

accession numbers involved in our analysis are: A04321, AB078005, AB097870, 

AF003887-AF003888, AF004394, AF042100-AF042101, AF049494-AF049495, 

AF069140, AF070521, AF146728, AF256206, AF286365, AF538302-AF538304, 

AF538306-AF538307, AJ006287, AJ271445, AY173951-AY173954, AY173956, 

AY180905, AY308761-AY308762, AY314044-AY314063, AY331283-AY331284, 

AY331296, AY332236, AY352275, AY423384, AY560107-AY560108, D10112, 

D86068-D86069, K02007, K02013, K02083, L02317, L31963, M17451, M19921, 
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M26727, M38429, M93258, U12055, U23487, U26942, U34603-U34604, U39362, 

U43096, U43141, U63632, U69584-U69593, U71182, Z11530.  

Calculation of codon volatility P values.  Gene-specific volatility P values 

for each genome were obtained by implementing the command-line version of the 

volatility server, kindly provided by Dr. J. Plotkin.   In brief, the volatility of each 

codon, v(C), is calculated as follows: 

v(C) = N/T 

where N is the number of nonsynonymous codons that differ from codon C at a 

single  nucleotide position and T is the total number of (non-termination) codons that 

differ from codon C at a single nucleotide position.  A gene’s volatility, v(G), is the 

sum of the volatilities of its codons.  The volatility P value for each gene is calculated 

by comparing v(G) against the volatility of the remaining genome, adjusting for amino 

acid composition and length (26). 

Estimation of dN/dS using comparative methods.  Three separate programs 

were implemented to obtain gene-specific estimates of dN/dS: the command line 

version of the Synonymous NonSynonymous Analysis Program (SNAP) (13), 

Hypothesis Testing Using Phylogenies (HyPhy) (15), and Phylogenetic Analysis by 

Maximum Likelihood (PAML) (38). 

The Synonymous NonSynonymous Analysis Program (SNAP) is a convenient 

implementation of the method originally developed by Nei and Gojobori (21) that 

calculates the number of synonymous and nonsynonymous base substitutions for all 

pairwise comparisons of sequences in an alignment.  The number of actual 
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synonymous and nonsynonymous codon changes between each pair of sequences are 

counted, as well as the number of potential synonymous and nonsynonymous changes.  

The reported dN/dS ratio for each comparison is the proportion of observed 

nonsynonymous substitutions divided by the proportion of observed synonymous 

substitutions, adjusting for multiple hits using the Jukes-Cantor correction (11). 

The REL (Random Effects Likelihood) method (14) fits two independent 

distributions to synonymous and nonsynonymous substitution rates and infers whether 

a site is under selection by computing empirical Bayes Factors for the event that 

dN>dS (or dN<dS) at any fixed sites.  Recent results (14,15) suggest that failure to 

allow silent substitution rates to vary among codon sites may lead to biased estimated 

of overall dN/dS and misidentification of hypervariable sites as being under selection.  

A web implementation of the REL method is available at: 

http://www.datamonkey.org/ 

CODEML (version 3.13) is available in the PAML package of programs and 

utilizes a number of different models of codon evolution within a maximum likelihood 

framework to estimate selection pressures for each codon site in a multiple alignment 

(39).  The average dN/dS for each alignment was estimated by the M8 model (positive 

selection); M7 (null model) was rejected in all cases using a likelihood ratio test.  

Since CODEML requires phylogenetic trees as input, the PAUP* package (35) was 

used to construct maximum likelihood phylogenetic trees under the HKY85+G model 

using nearest neighbor interchange branch swapping on an initial tree constructed by 

the neighbor joining method. 
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Method comparison.  A Spearman rank correlation coefficient was computed 

using JMP Version 5.1 (30) for all pairwise comparisons between selection detection 

methods.  

Prediction of coreceptor usage.  A support vector machine-based method was 

employed to predict the coreceptor usage of viruses based on V3 loop amino acid 

sequence (24). This method is reported to predict CXCR4 usage with a specificity of 

93% (10).  The coreceptor classifier is available for public use at: 

http://genomiac2.ucsd.edu:8080/wetcat/tropism.html   

Codon Usage Analysis. The General Codon Usage Analysis (GCUA) package 

was implemented to look for coreceptor phenotype-specific codon usage patterns (17). 

RESULTS AND DISCUSSION 

To investigate how gene volatility varies in relation to comparative estimates 

of selection intensity across the HIV-1 genome, we compiled and analyzed a data set 

consisting of all available full-length subtype B HIV-1 sequences.  Multiple sequence 

alignments were generated for gag, protease, reverse transcriptase (RT), integrase, 

env, and nef, excluding all coding regions associated with overlapping reading frames.  

Mean volatility P values, ranked from highest to lowest, were as follows (Fig. 1): nef, 

0.97; protease, 0.63; gag, 0.62; RT, 0.40; env, 0.37; integrase, 0.12.  This hierarchy is 

in conflict with our basic understanding of HIV-1 biology.  For example, the rate of 

evolution of env has been estimated at 1-2% a year based on longitudinal intrapatient 

data and is the highest of all HIV-1 genes (31).  Positive selection intensity is expected 

to be highest on Env due to its exposed location on the virion surface with its rapid 
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evolution in response to neutralizing antibodies and its role as the primary determinant 

of cellular tropism in a diverse target cell environment (1,29).   

Selection pressure is typically described as the ratio between nonsynonymous 

substitutions per nonsynonymous site (dN) and synonymous substitutions per 

synonymous site (dS) (21).  We calculated global, gene-specific estimates of dN/dS 

using three established comparative methods: the maximum likelihood-based 

approaches of Nielsen-Yang and Kosakovsky Pond, and the distance-based method of 

Nei and Gojobori (15,21,39).  The mean gene-specifc estimates of dN/dS across all 

three methods, ranked from highest to lowest, were as follows (Fig. 2): env, 1.30; nef, 

0.97; gag, 0.42; protease, 0.32; integrase, 0.28; RT, 0.22.  These findings are in 

accordance with our concept of viral biology; the surface antigen is under the strongest 

positive selection due to immune pressure, while structural proteins and enzymes are 

conserved due to functional constraint.   

We calculated a Spearman’s rank correlation coefficient for pairwise 

comparisons between all methods.  Results obtained using the volatility approach 

failed to correlate with dN/dS estimates derived via all three comparative methods in 

our study (0.50<p<1).  In contrast, the comparative methods were internally 

consistent, with p-values ranging from 0.016 to 0.058 (Table 1).  The tight correlation 

between dN/dS estimates derived via Nei-Gojobori, Nielsen-Yang and REL speaks to 

the robustness of the comparative framework, since there is considerable 

methodological divergence between these techniques (14).   
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The chemokine receptor preference of an HIV-1 strain is primarily determined 

by the third variable region (V3) of the envelope glycoprotein (7).  The V3 sequences 

from CCR5-using (R5) strains have been reported to be more resistant to positive 

selection pressure than CXCR4-using (X4) variants (33).  As an additional test of the 

volatility method, we attempted to replicate this finding by determining the coreceptor 

phenotype of our data set and measuring positive selection pressure on both classes of 

V3 sequences.  We predicted the chemokine receptor usage of all 92 viral strains in 

our data set based on V3 amino acid sequence using a previously trained machine 

learning algorithm (24).  Twenty-six sequences were predicted to use the CXCR4 

receptor, while the remaining sixty-six were classified as R5 variants.  We measured 

selection intensity in both viral populations (R5 and X4) using the Nei-Gojobori, REL, 

and codon volatility approaches.  Our dN/dS estimates were significantly higher in the 

X4 subset, in accordance with earlier reports (Table 2).  Once again, observed 

volatility P values failed to correlate with dN/dS estimates; mean P values were 

significantly lower for the CCR5-using subset of V3 sequences, suggesting that there 

was less evidence of positive selection in the X4 class (Table 2). 

Some of the most extreme examples of positive selection in nature are found in 

the variable regions of the HIV-1 envelope (34).  Our observation that the codon 

volatility method fails to appropriately detect positive selection within the V3 region 

of HIV-1 env further refutes the claim that volatility is a reflection of selection 

pressure.  To identify the foundation of the volatility method, we investigated the 

relationship between sequence variation in our data set and observed volatility P 
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values.  We looked for evidence of differential codon usage using the GCUA (General 

Codon Usage Analysis) package (17).  There were no significant differences in codon 

usage patterns between R5 and X4 V3 loop sequences (data not shown), pointing to 

another cause for the observed discrepancy in mean volatility P values.  We calculated 

correlation coefficients between the relative composition of each of the twenty amino 

acids and the mean volatility P values for the six HIV-1 genes involved in our earlier 

analysis (Table 3).  The frequency of arginine was most strongly correlated with 

volatility P values (correlation coefficient = 0.691).  We then compared the amino 

acid compositions of R5 and X4 V3 loop sequences.  Arginine was the amino acid that 

exhibited the greatest average difference in relative composition between these two 

classes.  The mean arginine content of X4 V3 loops was 18.4%, in contrast to 10.5% 

for the R5 variants, reflecting the higher net positive charge of the X4 class (7,24).  

The codon AGA was used to encode arginine preferentially in all V3 loop sequences.  

Taken together, these data strongly suggest that differential amino acid composition, 

rather than codon composition, was responsible for the observed discrepancies in 

volatility P values. 

Our observations are consistent with recent reports demonstrating that 

volatility fails to correlate with selection as measured by comparative methods in the 

cases of M. tuberculosis, M. bovis and E. coli (6,40).  In addition, several reports have 

emerged discrediting the codon volatility method based on theoretical concerns.  

Computer simulations of sequence evolution demonstrate that directional selection has 

no effect on codon volatility, and volatility can increase in the absence of positive 
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selection (6,22,40). The inherent methodological limitation associated with 

considering only 4 out of the 20 amino acids (arginine, glycine, leucine, and serine) is 

exacerbated by the observation of Chen and colleagues that serine codon usage exerts 

a disproportionately large influence on volatility P values (3).  Hahn et al observed 

that a gene’s codon adaptation index (CAI), used to predict its expression level, 

explains a much larger proportion of variance in volatility than selection (as measured 

by comparative methods) (9).  Similarly, the recent analysis of eukaryotic genomes by 

Friedman and Hughes revealed that nucleotide content at the second codon position 

was a much more powerful correlate of elevated codon volatility than selection 

intensity (8). 

There are features particular to the HIV-1 genome that make it an especially 

unattractive subject for the codon volatility method.  Firstly, HIV, like RNA viruses in 

general, has a relatively high mutation rate of ~3.4*10-5 mutations/site/generation 

(16).  Given that 1010 virus particles are produced each day within an infected host, 

there is a considerable probability that a nonsynonymous substitution in the HIV 

genome will be masked by a subsequent synonymous substitution at the same site 

prior to being sampled (23).  Therefore, positive selection is likely to be 

underestimated on average using the volatility approach.  Another complicating factor 

stems from the observation that mutation rate itself varies across the HIV-1 genome 

(14); evidence of recent positive selection would be expected to erode at different rates 

at different sites, skewing volatility scores.  Moreover, HIV-1 undergoes 

recombination at a minimum rate of 2.8 crossovers per genome per cycle (41).  This 
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undoubtedly influences per-gene estimates of volatility, although the direction and 

magnitude of this effect likely depend on the precise location of break points as well 

as the genetic distance between parental strains.  Lastly, the HIV-1 genome is short 

(<10kb) and contains only nine genes.  There is very little statistical power available 

for intragenomic comparisons.  

Determining which genes and which sites within genes are under the greatest 

or least selection pressures will be important in the rational design of a HIV vaccine 

(4,12,25).  A selection detection method that requires only a single representative 

genome such as ‘codon volatility’ would be attractive.  However, we have 

demonstrated that codon volatility is not a reliable indicator of selective pressure on 

the HIV genome.  
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Table 1: Pairwise comparison of selection detection methods 
 

comparison Spearman’s rank correlation 
coefficient 

p-value Z-score 

Volatility vs. REL Rs = 0.0286 p<= 1 Z = 0.0639 
Volatility vs. Yang Rs = 0.3143 p<= 0.5639 Z = 0.7028 
Volatility vs. Nei Rs = 0.3286 p<= 0.4972 Z = 0.7347 
REL vs. Yang Rs = 0.8286 p<= 0.0583 Z = 1.8527 
REL vs. Nei* Rs = 0.9000 p<= 0.0167 Z = 2.0125 
Yang vs. Nei* Rs = 0.9286 p<= 0.0167 Z = 2.0763 
 
The results of all four methods were compared in a pairwise fashion using a 
Spearman’s rank test. The rank correlation coefficient, Rs = 1-(6Σd2/n3-n), where n = 
number of ranks and d = difference between ranks.  Asterisks indicate significant 
correlations (p<0.05). 
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Table 2: Inferred positive selection pressure on R5 and X4 V3 loop sequences 
 

Statistic R5 mean (c.v.) X4 mean (c.v.) p-value 
Volatility P value 0.052 (1.154) 0.288 (0.861) p< 0.0001 
dN/dS (Nei-Gojobori) 0.565 (1.619) 1.282 (1.184) p< 0.0001 
dN/dS (REL) 0.670 (1.110) 1.467 (0.678) p< 0.012 
 
Positive selection pressure was estimated using the Nei-Gojobori, REL, and codon 
volatility approaches.  Coefficients of variation for each mean estimate are listed in 
parentheses.  Method-specific estimates were compared between R5 and X4 classes 
using either a two-tailed Mann-Whitney test (volatility and Nei-Gojobori methods) or 
a likelihood ratio test (REL). 
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Table 3: Correlations between amino acid frequencies and gene-specific volatility P 
values 
 

Amino 
acid 

Gag 
(0.62) 

Protease 
(0.63) 

RT 
(0.40)

Integrase
(0.12) 

Env 
(0.37)

Nef 
(0.97)

Correlation 
coefficient 

arg 6.1 3.5 2.9 4.2 4.7 7.7 0.6906 
met 3.5 2.3 1.6 1.7 2 2.7 0.6439 
glu 7.9 4.7 8.6 6.3 5.5 11.8 0.6189 
pro 4.8 4.7 7.9 3.5 3.3 7.2 0.5200 
leu 7 12.8 8.1 5.2 8.4 7.7 0.3665 
his 2 1.2 1.6 2.8 1.4 3.6 0.3344 
gly 7.2 15.1 5.4 8 5.9 7.7 0.2304 
ala 10.3 3.5 3.8 8.7 6.1 8.6 0.1218 
tyr 1.8 1.2 3.8 2.8 2.4 3.6 0.0168 
ser 5.7 0 3.2 4.5 5.9 5 -0.0611 
phe 1.5 2.3 3.2 2.8 2.9 3.2 -0.0683 
asn 5.5 4.7 2.9 3.1 9.7 3.6 -0.0758 
trp 1.8 1.2 4.1 2.4 3 3.2 -0.0783 
cys 2.2 2.3 0.5 2.1 2.6 1.4 -0.1479 
thr 5.7 7 7 4.2 8.7 3.2 -0.3317 
asp 2.4 4.7 4.3 6.6 3 4.1 -0.4556 
ile 5.3 12.8 7.2 8.3 7.7 1.8 -0.4807 
lys 7.2 5.8 11.3 9 5.2 4.5 -0.6138 
val 5.3 5.8 6.6 7.6 6.6 6.3 -0.6590 
gln 6.8 4.7 5.9 6.3 4.9 3.2 -0.6760 
 
Amino acid frequencies reported as percentages of overall composition.  Mean 
volatility P values for each gene are indicated in parentheses.  Pearson correlation 
coefficients were calculated between residue frequencies and gene volatilities. 
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Figure 1: Mean volatility P values across the HIV-1 genome.  Gene-specific 
volatilities were calculated for 92 full-length subtype B HIV-1 genomes.  Error bars 
represent s.d.. 
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Figure 2: Comparative estimates of selection intensity across the HIV-1 genome.  
Three comparative methods (Relative Effects Likelihood, Nielsen-Yang, and Nei-
Gojobori) were employed to calculate gene-specific dN/dS estimates for 92 full-length 
subtype B HIV-1 genomes. 
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Figure 3: Cumulative behavior of the average synonymous and nonsynonymous 
substitutions, moving codon by codon across (a) CCR5-using (R5) and (b) CXCR4-
using (X4) V3 sequences. 
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Chapter 4 

Semen-Specific Genetic Characteristics of Human Immunodeficiency Virus Type 
1 env 
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ABSTRACT 

Human immunodeficiency virus type 1 (HIV-1) in the male genital tract may 

comprise virus produced locally in addition to virus transported from the circulation. 

Virus produced in the male genital tract may be genetically distinct, due to tissue-

specific cellular characteristics and immunological pressures. HIV-1 env sequences 

derived from paired blood and semen samples from the Los Alamos HIV Sequence 

Database were analyzed to ascertain a male genital tract-specific viral signature. 

Machine learning algorithms could predict seminal tropism based on env sequences 

with accuracies exceeding 90%, suggesting that a strong genetic signature does exist 

for virus replicating in the male genital tract. Additionally, semen-derived viral 

populations exhibited constrained diversity (P < 0.05), decreased levels of positive 

selection (P < 0.025), decreased CXCR4 coreceptor utilization, and altered 

glycosylation patterns. Our analysis suggests that the male genital tract represents a 

distinct selective environment that contributes to the apparent genetic bottlenecks 

associated with the sexual transmission of HIV-1. 

INTRODUCTION 

Most human immunodeficiency virus (HIV) transmission events globally 

occur via mucosal exposure to male genital secretions carrying the virus (34, 46). 

Although the risk of sexual HIV transmission correlates with the amount of virus 

present in the blood of the source partner (36), the correlation between the viral load in 

the blood and genital compartment is inconsistent (3, 23, 24). The biological 
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determinants that influence the transmissibility of different viral variants from within 

the genital tract of the HIV-infected source are still incompletely understood. Since 

transmitted virus represents the initial virus that the immune system encounters, the 

understanding of its composition will be critical in our attempts to develop a 

successful HIV vaccine (1, 7, 54).  

HIV in each chronically infected person exists as a diverse population of 

related genetic variants (5, 12, 20). Anatomic compartmentalization of these variants 

has been described in blood, lung, central nervous system, and genital tract (10, 16, 

17, 20, 21, 32, 41, 50, 53). Male genital tract tissues (e.g., the prostate, seminal 

vesicles, and epididymis) serve as sites of viral replication and are likely to differ from 

peripheral tissues in immunological surveillance, target cell characteristics, and 

efficiencies of drug penetration (10, 17, 43). Virus replicating within the male genital 

tract could therefore develop distinct, compartment-specific characteristics in response 

to these local selective pressures (10, 16, 17, 20, 21, 32, 41, 50, 53). Although genetic 

differences between blood- and semen-derived HIV in an individual have been 

documented, a seminal signature sequence remains elusive (6, 10). This failure to 

identify a signature sequence could be attributable to the fact that previous efforts 

mainly focused on proviral DNA sequences, which often represent archival viral 

genotypes rather than contemporary, actively replicating variants (4, 44). 

We investigated viral genetics and compartmentalization within the male 

genital tract by applying a battery of computational techniques to paired semen- and 

blood-derived HIV-1 RNA env sequences. Our results suggest that the male genital 
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tract can represent a legitimate viral compartment, although this compartmentalization 

is not absolute. Furthermore, when viral migration between blood plasma and the male 

genital tract is minimal and infrequent, there are several distinct genetic features 

associated with semen-derived HIV variants. Understanding these tissue-specific 

properties of HIV type 1 (HIV-1) will likely be crucial for the development of an 

effective vaccine.  

MATERIALS AND METHODS 

Sequence data. All of the semen-derived HIV-1 env sequences from the Los 

Alamos National Lab HIV Sequence Database with accompanying subject 

identification were downloaded. Blood-derived sequences from the same individuals 

were downloaded; semen sequences without matching blood data were removed from 

the set. GenBank database accession numbers included in our analysis are AF098718 

to AF098734, AF256230 to AF256465, AF373037 to AF373043, AF535219 to 

AF535859, AY005164 to AY005179, U00821 to U00843, U13381 to U13388, and 

U96502 to U96608. Duplicates, sequences derived by direct PCR sequencing, proviral 

DNA sequences, and nonfunctional open reading frames (containing frameshifts, 

premature stop codons, etc.) were deleted. The final set consisted of 659 env C2-V3 

RNA sequences (spanning HXB2 coordinates 799 to 1410) from a total of 12 patients 

(376 plasma and 283 semen samples).  

Phylogenetic reconstruction. Initial multiple sequence alignments were 

generated by using Multalin (8), with default gap parameters and the DNA 5-0 

substitution matrix. Subsequent manual aligning was performed by using the Se-Al 
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sequence alignment editor (37). Phylogenies describing sequences from each 

individual host were built by using FastDNAml (30), estimating base frequencies from 

the data and a transition/transversion ratio of 2.0. All diversity and divergence 

measurements were calculated by using dnadist (14). The absolute rate of molecular 

evolution (molecular clock) was estimated by running TipDate (38) on maximum 

likelihood phylogenies with dated tips. A master tree describing the entire data set was 

built by implementing dnadist and neighbor within the PHYLIP version 3.5c software 

package (14) by using the F84 model, gamma distributed rates across sites, and a 

transition/transversion ratio of 2.0. Trees were viewed with TreeView X (31).  

Evaluation of compartmentalization. The degree of segregation between 

compartments was assessed by testing for panmixis by using gene phylogenies (18, 

42) as implemented in the MacClade program (Sinauer, Sunderland, Mass.). In brief, 

the minimum possible number of intercompartment migration events was tallied, 

based on the maximum likelihood trees for each individual subject's C2-V3 sequences 

and their characterization according to compartment of origin. This result was 

compared to the distribution of migration events for 1,000 randomly generated trees. 

Evidence of restricted gene flow (compartmentalization) was documented when <1% 

of the random trees required the same or fewer number of migration events as for the 

sample data (29).  

Machine learning classification. A machine learning approach was employed 

to look for a tissue-specific genetic signature. All classification experiments in this 

analysis were conducted by using WEKA (Waikato environment for knowledge 
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analysis), an open source collection of data processing and machine learning 

algorithms (49). The J48 decision tree inducer, based on the C4.5 algorithm (35) was 

implemented with the parameter "MinNumObj" set at a value of 7 to limit the 

complexity of theories and minimize the risk of overfitting. Classifiers were evaluated 

by using 100 iterations of stratified 10-fold cross-validation, a procedure designed to 

reflect the performance of classification models on novel data sets. For each of 100 

trials, the data set was randomly divided into 10 groups of approximately equal size 

and class distribution. For each "fold," the classifier was trained by using all but 1 of 

the 10 groups and then tested on the unseen group. This procedure was repeated for 

each of the 10 groups. The cross-validation score for one trial was the average 

performance across each of the 10 training runs. The reported score is the average 

across the 100 trials (49). In addition, we have reported the true positive rate (TPR) 

and precision for these classification experiments: TPR = [number of true 

positives/(number of true positives + number of false negatives)]; precision = [number 

of true positives/(number of true positives + number of false positives)].  

Analysis of Selection. A maximum likelihood method was used to detect and 

quantify positive and negative selection. All data sets were first evaluated by using a 

model selection procedure (22) to identify and correct for strong nucleotide 

substitution biases which are ubiquitous in HIV. The fixed-effects likelihood (FEL) 

approach (22) was employed to test for selective pressure at a given site. Maximum 

likelihood estimates of branch lengths and nucleotide substitution rate parameters 

were derived from the entire alignment. A full codon model, using a modified MG94 
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(28) rate matrix with site-specific instantaneous synonymous (alphas) and 

nonsynonymous (betas) rates was then fitted independently to every codon position in 

the data, under two hypotheses: H_0, neutral evolution (alphas equal betas); H_A, 

nonneutral evolution (alphas and betas are free to vary independently). 

When the hypothesis of neutrality was rejected at site s, it was called positively 

selected if betas was estimated to be greater than alphas. The FEL method was 

implemented on a cluster of computers by using the HyPhy package (22).   

Coreceptor usage prediction. A support vector machine-based method was 

employed to predict the coreceptor usage of viruses based on the V3 loop amino acid 

sequence (33). This method is highly reliable and is reported to predict CXCR4 usage 

with a specificity of 93% (19). The coreceptor classifier is available for public use at: 

http://genomiac2.ucsd.edu:8080/wetcat/tropism.html.  

Glycosylation. GlycoTracker.pl (S. Pillai, unpublished data) was used to 

identify N-linked glycosylation sites within each sequence. The Perl script provides a 

tally of all sequons, along with their respective locations (numbered according to 

HXB2 gp160). We compared the extent and distribution of N-linked glycosylation 

across the C2-V3 region in both compartments by identifying NXS and NXT (where 

X is some other residue) motifs in plasma- and semen-derived sequences (25). All 

statistical comparisons were performed by using a Wilcoxon Mann-Whitney test (11).  

Codon usage analysis. The general codon usage analysis (GCUA) package 

was implemented to look for compartment-specific codon usage biases (26).  
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RESULTS  

Compartmentalization of semen-derived virus. 

To determine if the male genital tract represents a viral compartment, we used 

systematic phylogenetic comparison of matched blood- and semen-derived HIV-1 

RNA env sequences from 12 individuals. We hypothesized that if the male genital 

tract is indeed a viral compartment, semen-derived sequences within each individual 

should cluster independently, while exhibiting similar levels of diversity and 

divergence as matching plasma sequences given comparable effective population sizes 

(29). Maximum likelihood trees describing contemporaneous variants from both 

tissues revealed that the male genital tract represented a distinct virologic 

compartment in six individuals (identified as A to F) (Fig. 1a; see Fig. S1 in the 

supplemental material), based on phylogenetic segregation between blood and semen 

virus. In five of the individuals, sequences did not cluster with respect to compartment 

(Fig. 1b; see Fig. S3 in the supplemental material). In one individual, G, there were 

longitudinal data that showed compartmentalization at the earlier time points but then 

apparent panmixis at later time points (see Fig. S2 in the supplemental material). In 

accordance with previous reports, a neighbor-joining tree comprising pooled data from 

all compartmentalized patients revealed that host, rather than compartment of origin, 

was the strongest phylogenetic determinant (see Fig. S4 in the supplemental material). 

Genetic diversity in plasma- and semen-derived viral populations.  

Genetic diversity was characterized by calculating the average pairwise 

distance within a population, based on distance measurements obtained by using the 
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F84 matrix. Data across multiple time points were pooled when available. Individuals 

with phylogenetically distinct virus in blood and semen consistently exhibited lower 

genetic diversity in semen-derived viral populations (P < 0.01 by a paired Wilcoxon 

test). Conversely, individuals with noncompartmentalized virus failed to demonstrate 

any significant differences in viral diversity between tissues (Fig. 2).  

Analysis of longitudinal sequence data.  

Longitudinal sequence data spanning multiple years were available for five 

individuals (identified as F, G, I, J, and K). We first evaluated tissue-specific 

longitudinal genetic diversity in these individuals by computing average pairwise 

genetic distances for each time point where blood and semen sequences were 

available. The longitudinal data reinforced our aforementioned results; individual F, 

characterized by compartmentalized virus at all available time points, exhibited 

constrained viral diversity in semen throughout the 2-year monitored period (Fig. 3a). 

Individual G, who transitioned from compartmentalized to noncompartmentalized 

virus, showed considerable variation in tissue-specific diversity; semen diversity 

bounced between being greater and less than contemporaneous plasma diversity, in 

accordance with inconsistent trafficking between these tissues. Individuals I, J, and K 

were consistently characterized by noncompartmentalized virus and exhibited similar 

levels of viral diversity in blood and semen at nearly all sample points (see Fig. S5 in 

the supplemental material). 

We next looked at longitudinal divergence in these five individuals, by 

calculating the average genetic distance from sequences at each time point to an 
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artificial, tissue-specific baseline consensus sequence. On average, the observed level 

of divergence was comparable across tissues in individuals with both 

compartmentalized and noncompartmentalized virus, consistent with actively 

replicating viral populations in both blood and male genital tract (see Fig. S5 in the 

supplemental material). We also calculated the divergence between blood- and semen-

derived virus by computing the average genetic distance between these populations at 

each time point. Individual F as expected demonstrated continually increasing 

divergence between tissue-specific populations, most probably due to a combination 

of genetic drift and compartment-specific viral adaptation. Intercompartment genetic 

distance exceeded 5% at the last available sample point (Fig. 3b). Individual G showed 

declining intercompartment divergence at each time point, mirroring the increased 

contribution of systemic virus to the seminal viral population. Divergence steadily 

diminished from approximately 8% at the onset to 2% at the final sampling time. 

Finally, hosts I, J, and K characterized by noncompartmentalized virus maintained low 

levels of intercompartment divergence throughout the monitored period; distances 

stayed below 2% at nearly all time points (see Fig. S5 in the supplemental material). 

Estimation of molecular clock.  

We used dated maximum likelihood phylogenies of sequences from host F, the 

only individual with compartmentalized virus and with available longitudinal data, to 

compare the viral molecular clock between plasma and semen. The estimated absolute 

rates of molecular evolution based on these phylogenies were 0.01004877 and 



   

 

70

0.00637917 substitutions/site/year for plasma- and semen-derived sequences, 

respectively. 

Semen-specific env genetic signature.  

Although phylogenetic evidence suggests that semen- and blood-derived 

viruses from a given host are more closely related to each other than to virus from 

corresponding tissues in other individuals, semen-derived viruses may still share 

genetic characteristics across individuals due to tissue-specific selective pressures that 

are common across hosts. We employed a machine learning approach (27, 33, 39) to 

identify a genetic signature associated with seminal tropism. The J48 decision tree 

inducer (based on the C4.5 algorithm) used in our analysis has been relied on 

extensively as an alternative to traditional discriminant analysis, due largely to its 

capacity to detect and exploit interactions between feature variables in training data 

sets (27). We first applied this algorithm to classify env sequences from all individuals 

based on tissue of origin. The training data for this experiment drew samples from the 

entire available sequence set, consisting of 376 plasma sequences and 283 from 

semen. Our results (Table 1) indicate that in this first classification only 65% of 

sequences were classified correctly, and seminal tropism was predicted with a true 

positive rate of 0.48. 

It is likely that a lack of apparent viral compartmentalization is due to 

persistent trafficking between blood and semen. To determine if these low scores were 

due to the presence of viral sequence data classified as semen-derived that actually 

represented a recent introgression of plasma virus into the male genital tract, we 
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purged the training set of all data associated with noncompartmentalized hosts. We 

retained the sequence data from individual G at compartmentalized time points. This 

pruned set consisted of 143 plasma sequences and 122 from semen. Our results for this 

second trial (Table 1) demonstrate a strong genetic signature associated with semen-

derived sequences; 82% of sequences were classified accurately based on tissue of 

origin, and seminal tropism was predicted with a precision of 0.842 and a TPR of 

0.818 (well over 90% of sequences were classified accurately when the entire training 

set was used for testing). It is important to point out that the cross-validation procedure 

used to evaluate this model is quite conservative; the classifier is always tested on a 

subset of the sequence data that it did not encounter during the training process. The 

signature underlying seminal tropism comprises a total of four positions within the 

C2-V3 region (numbered from the start of HXB2 gp160): 270, 291, 387, and 464 (Fig. 

4; see Fig. S6 in the supplemental material). The bulk of the signature focuses on 

either the amino acid character at position 464 or its immediate linkage with a single 

other Env residue. 

Identification of positively selected sites.  

We used a maximum likelihood approach to identify sites within env that were 

under positive selection in both compartments, focusing on individuals with 

compartmentalized virus. We sought to determine if the overall extent of selection and 

the array of sites under selection varied between compartments, consistent with our 

finding of a male genital tract-specific genetic signature. Sequence data from hosts A 

to G (including only data from the initial compartmentalized points associated with 



   

 

72

subject G) were first individually evaluated on a per compartment basis by using a 

model selection procedure to account for any existing mutational biases. Next the FEL 

approach (22) was employed to test for selective pressure at a given site. All sites in 

both compartments that appeared to be under positive selection were cataloged and 

compared. The number of positively selected sites was universally lower in semen-

derived viral populations (P < 0.01 by a paired Wilcoxon test) (Table 2). Four out of 

seven individuals failed to exhibit positive selection at any sites within the C2-V3 

region in their seminal virus. Additionally, in most cases the sites determined to be 

under positive selection varied between compartments. Only 3 out of 10 sites 

identified in seminal populations were also positively selected in corresponding 

plasma populations (Table 2). 

N-linked glycosylation in plasma- and semen-derived viral populations.  

To investigate variation in selection pressure from the neutralizing antibody 

response, we examined glycoslyation patterns across the viral envelope (48). If the 

antibody response is attenuated in the male genital tract, we might expect fewer 

glycosylation sites within semen-derived viral sequences. If the response is equivalent, 

but targeting different epitopes, we might expect a reassortment of sites though the 

overall number may remain constant. Our results demonstrate that the extent of 

glycosylation differs significantly in six out of seven patients characterized by 

compartmentalized virus, but the direction of the discrepancy is inconsistent (P < 0.05 

for six intrapatient comparisons; Mann-Whitney test). Individuals A, E, and G have 
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higher average numbers of sequons in semen-derived sequences, while the opposite 

condition holds true for individuals C, D, and F (Fig. 5). 

The distribution of glycosylation sites over time was tracked in the two 

individuals with compartmentalized virus and with associated longitudinal sequence 

data. Semen-derived sequences from individual F gradually acquired a single 

additional sequon at a site (position 411) that was never glycosylated in plasma 

populations. Plasma sequences demonstrated a continual reassortment of sites with 

negligible fluctuation in overall number, in accordance with the notion of an evolving 

"glycan shield" (48). Individual G exhibited a gradual increase in net number of 

glycosylation sites in both seminal and plasma-derived env sequences, with little 

reassortment in either compartment. 

Prediction of coreceptor usage.  

We predicted the chemokine receptor preference for all sequences derived 

from patients with compartmentalized virus to determine if seminal tropism was 

correlated with altered coreceptor usage. Our results suggest that a trend towards 

reduced CXCR4 usage in the male genital tract exists, although it is not statistically 

significant due to the rarity of the CXCR4 phenotype across individuals and 

compartments; only three out of seven hosts harbored variants predicted to use the 

CXCR4 receptor (Fig. 6). 

Evaluation of codon usage bias.  

It has previously been reported that the differential availability of nucleotide 

precursor pools in target cells may influence HIV-1 codon usage patterns. 
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Additionally, the cytidine deaminase APOBEC3G, found in lymphocytes, induces G 

to A mutations that skew codon usage towards A-rich triplets (51). If viral target cells 

within the male genital tract differ from peripheral tissues in precursor frequencies and 

APOBEC3G expression levels, an altered codon usage bias may evolve in seminal 

virus. Our analysis revealed no significant differences in codon usage between blood 

and semen virus (data not shown). 

DISCUSSION  

In these investigations we applied a battery of computational techniques to 

paired semen- and blood-derived HIV-1 env sequences, which confirmed previous 

reports that HIV within the genital tract is different from that within the bloodstream 

(10, 20). This study extends those observations with findings important to the 

understanding of how HIV adapts to the male genital tract. First, the male genital tract 

can function as a viral compartment, but the extent of compartmentalization differs 

between individuals and within individuals over time. Second, there are discordant 

selective pressures operating in the male genital tract and blood. Third, semen-derived 

viruses share a genetic signature across individuals due to tissue-specific selective 

pressures that are common across hosts.  

 Viral compartments are characterized by a restriction of gene flow between 

cells or tissues, usually identified by phylogenetic analysis (29). In this study, viral 

compartmentalization between blood and the male genital tract was identified in 6 out 

of 12 individuals, and another individual demonstrated compartmentalization of virus 

only at the earliest sampling times. Viral migration between blood plasma and the 
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male genital tract was minimal and infrequent in these individuals, which reinforces 

the concept that a significant fraction of virus shed in semen is produced locally in the 

male genital tract. Furthermore, there was a lower genetic diversity and rate of 

molecular evolution in seminal sequences, probably reflecting a lower effective 

population size within the male genital tract. This lower effective population size may 

contribute to the genetic bottleneck associated with HIV-1 transmission. We cannot 

exclude the possibility, however, that sampling issues contributed to this phenomenon; 

the efficiency of RNA extraction and reverse transcription-PCR may be lower in 

semen than plasma, increasing the potential for resampling.  

 The degree of compartmentalization varied among individuals and also within 

individuals over time. This may explain the observations of intermittent viral shedding 

in the semen of HIV-infected men (15, 47) and the increased viral shedding when the 

urethra is inflamed by concomitant bacterial or viral infection (40). Local 

inflammation is a likely explanation for increased trafficking of HIV from the 

circulation to the genital compartment. Future studies examining the relationship 

between sexually transmitted infections and seminal viral loads may provide valuable 

insight into viral adaptation and dynamics within the male genital tract. This 

understanding could be crucial in the development of methods to interrupt HIV 

transmission such as vaccines, microbicides, and antiretroviral suppression.  

 Seeding of genital tissues occurs very early in infection before the 

development of any anti-HIV immune response (13). Once the host mounts an anti-

HIV immune response, it most likely varies in strength and nature between 
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compartments (29). We investigated the degree of selection on the virus within the 

two compartments and found that there was greater positive selection on virus in the 

blood than virus in the male genital tract. In six out of the seven individuals with 

compartmentalized virus, there were highly significant differences in env 

glycosylation but not in a consistent direction. While this reinforces the theory that 

virus is produced locally in the male genital tract and responds to local humoral 

immunity, it does not explain the recent reports that HIV transmission through 

heterosexual exposure involves viruses with fewer envelope glycans (11).  

 Since cellular tropism may also play a role in viral compartmentalization and 

adaptation to the male genital tract, we investigated the coreceptor usage of viruses in 

blood and semen. It is provocative that in all individuals who harbored CXCR4-using 

viruses, these viruses were underrepresented in the genital tract. Selection favoring R5 

variants in the male genital tract may explain the observation that newly infected 

individuals are disproportionately infected with CCR5-using viruses (54, 55).  

 Although HIV within the male genital tract is often different from that within 

the bloodstream (10, 17, 32), the initially infecting virus (founding virus) and the 

individual's immune responses determine viral genetics more than tissue of origin 

(29). Therefore, it has been difficult to determine if semen-derived virus shares 

common genetic characteristics among individuals (10). Using machine learning 

techniques, we have found that semen-derived HIV-1 has a strong genetic signature 

among individuals with compartmentalized virus. The signature comprises several 

positions across C2-V3; however, the residue at position 464 appears to be the most 
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critical in determining viral tropism to the male genital tract. This particular position, 

to the best of our knowledge, has not previously been reported within the context of 

tissue tropism or viral compartmentalization. Nevertheless, this classification trial 

presents convincing evidence that the male genital tract environment selects for 

similar, predictable genetic changes in env across individuals.  

 The male genital tract has been characterized as a reservoir (43, 52), a 

compartment (10), and a drug sanctuary (45). All have significant implications for 

preventing the transmission of HIV by using various theoretical methods such as 

microbicides, vaccines, or antiretroviral therapy (2, 9, 10). Our investigations uniquely 

detail the viral compartmentalization dynamics and differing selection pressures 

between the blood and male genital tract and document a specific genetic signature of 

virus compartmentalized in the male genital tract. Taken together, these data offer 

important insights into the adaptation of HIV to the male genital tract, which may be 

valuable in the rational design of an effective vaccine. 
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FIGURES AND TABLES 

 

 

 

Table 1: Classification of env C2-V3 sequences based on tissue of origin (cross-
validation statistics) 

 

 All Sequences Compartmentalized 
Sequences 

Correctly classified instances 434 (65.9%) 217 (81.9%) 

Incorrectly classified instances 225 (34.1%) 48 (18.1%) 

Total number of instances 659 265 

Kappa statistic .281 .636 

True positive rate - blood  79.5% 82.0% 

True positive rate - semen 47.7% 81.8% 
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Table 2: Sites under positive selection in compartmentalized individuals. Fewer sites 
were under selective pressure in seminal populations based on the Approximate 
Likelihood Ratio at a Site (ARS) method (p<0.01, paired Wilcoxon). 

 

Individual A B C D E F G 

Blood 397, 

467 

461 - 354, 438 402 335, 336, 

337, 340, 

343, 354, 446 

283, 335, 336, 

346, 354, 263, 

364, 405, 466, 

467 

Semen 364 - - - - 354, 446 354, 401, 402, 

455, 460, 463, 

471 
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Figure 1: Examples of compartmentalized and noncompartmentalized viral 
populations. Maximum likelihood phylogenies of C2-V3 env sequences. (a) Individual 
A, compartmentalized virus. (b) Individual J, noncompartmentalized virus. Open 
circles represent semen sequences, and closed circles indicate plasma-derived 
sequences. Black squares represent the HXB2 outgroup. Scale bar equals 10% genetic 
distance. 

a b 
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Figure 2: Genetic diversity in semen-derived and blood-derived viral populations. 
Genetic diversity was significantly lower in semen-derived viral populations within 
individuals characterized by compartmentalized virus (individuals A to Gc; P < 0.01 
by a paired Wilcoxon test). No significant difference in viral diversity between blood 
and semen viral populations was observed in individuals with noncompartmentalized 
virus (individuals Gn to L). Vertical bars represent standard error. 
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Figure 3: Longitudinal viral diversity and divergence in an individual with 
compartmentalized virus, individual F. (a) Genetic diversity measured over a 2-year 
period. (b) Divergence and intercompartment genetic distance measured over a 2-year 
period. Vertical bars represent standard error 
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Figure 4. Genetic signature associated with seminal sequences from 
compartmentalized individuals.  Decision tree classifying C2-V3 env sequences based 
on tissue of origin with 82% accuracy. p, plasma classification; s, semen. The values 
in parentheses are the number of instances/number of incorrect classifications. Residue 
numbers are based on HXB2 gp160 positions. 
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Figure 5. Extent of viral glycosylation in plasma and semen of individuals with 
compartmentalized virus. N-linked glycosylation sites were predicted based on an 
NXS or NXT sequence motif. Asterisks indicate significant comparisons (P < 0.05 by 
a Mann-Whitney test). Vertical bars represent standard error. 
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Figure 6. Coreceptor phenotype in plasma and semen of individuals with 
compartmentalized virus showing evidence of CXCR4 usage in either tissue. 
Phenotypes were predicted based on V3 genotype by using a machine learning 
approach 
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Supplementary Figure 1. Maximum likelihood phylogenetic trees of each 
compartmentalized individual's sequence data (individulas A-F).  HIV-1 HXB2 
included as outgroup sequence.  Scale bar represents 10% genetic distance. 
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Supplementary Figure 1 (cont’d). Maximum likelihood phylogenetic trees of each 
compartmentalized individual's sequence data (individulas A-F). HIV-1 HXB2 
included as outgroup sequence.  Scale bar represents 10% genetic distance. 
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Supplementary Figure 1 (cont’d). Maximum likelihood phylogenetic trees of each 
compartmentalized individual's sequence data (individulas A-F). HIV-1 HXB2 
included as outgroup sequence.  Scale bar represents 10% genetic distance. 
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Supplementary Figure 1 (cont’d). Maximum likelihood phylogenetic trees of each 
compartmentalized individual's sequence data (individulas A-F). HIV-1 HXB2 
included as outgroup sequence.  Scale bar represents 10% genetic distance. 
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Supplementary Figure 1 (cont’d). Maximum likelihood phylogenetic trees of each 
compartmentalized individual's sequence data (individulas A-F). HIV-1 HXB2 
included as outgroup sequence.  Scale bar represents 10% genetic distance. 
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Supplementary Figure 1 (cont’d). Maximum likelihood phylogenetic trees of each 
compartmentalized individual's sequence data (individulas A-F). HIV-1 HXB2 
included as outgroup sequence.  Scale bar represents 10% genetic distance. 
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Supplementary Figure 2. Maximum likelihood phylogenetic tree of all sequence data 
associated with individual G, who demonstrates inconsistent viral 
compartmentalization between blood and semen. HIV-1 HXB2 included as outgroup 
sequence.  Scale bar represents 10% genetic distance. 
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Supplementary Figure 3. Maximum likelihood phylogenetic trees of each non-
compartmentalized individual's sequence data (individulas H-L). HIV-1 HXB2 
included as outgroup sequence.  Scale bar represents 10% genetic distance. 
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Supplementary Figure 3 (cont’d). Maximum likelihood phylogenetic trees of each 
non-compartmentalized individual's sequence data (individulas H-L). HIV-1 HXB2 
included as outgroup sequence.  Scale bar represents 10% genetic distance. 
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Supplementary Figure 3 (cont’d). Maximum likelihood phylogenetic trees of each 
non-compartmentalized individual's sequence data (individulas H-L). HIV-1 HXB2 
included as outgroup sequence.  Scale bar represents 10% genetic distance. 
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Supplementary Figure 3 (cont’d). Maximum likelihood phylogenetic trees of each 
non-compartmentalized individual's sequence data (individulas H-L). HIV-1 HXB2 
included as outgroup sequence.  Scale bar represents 10% genetic distance. 
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Supplementary Figure 3 (cont’d). Maximum likelihood phylogenetic trees of each 
non-compartmentalized individual's sequence data (individulas H-L). HIV-1 HXB2 
included as outgroup sequence.  Scale bar represents 10% genetic distance. 
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Supplementary Figure 4. Neighbor-joining tree of all individuals demonstrating viral 
compartmentalization between blood and semen (individuals A-G, only 
compartmentalized subset of sequence data from individual G is included here).  
Bubbles represent sequences from a single individual.  HIV-1 HXB2 included as 
outgroup sequence. 
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Supplementary Figure 5. Longitudinal diversity and divergence in four individuals (G, 
I, J, and K). 
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Supplementary Figure 5 (cont’d). Longitudinal diversity and divergence in four 
individuals (G, I, J, and K). 
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Supplementary Figure 6. HIV-1 HXB2 gp120 structure with semen-specific signature 
residues highlighted.  Red = gp120, yellow = CD4, green = signature residue.
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Chapter 5 

Genetic Attributes of Cerebrospinal Fluid-Derived HIV-1 
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ABSTRACT 

Background: HIV-1 often invades the central nervous system (CNS) during primary 

infection, eventually resulting in neurological disorders in up to 50% of untreated 

patients.  The CNS is a distinct viral reservoir, differing from peripheral tissues in 

immunological surveillance, target cell characteristics, and antiretroviral penetration.  

Neurotropic HIV-1 likely develops distinct genotypic characteristics in response to 

this unique selective environment.  

Objective: To catalog the genetic features of neurotropic HIV-1, and to evaluate 

the contribution of viral genetics to neurovirulence. 

Methods: 456 clonal HIV-1 RNA sequences of the C2-V3 env subregion were 

generated from CSF and plasma of 18 chronically infected patients.  

Neuropsychological performance of all subjects was evaluated and summarized as a 

global deficit score.  A battery of phylogenetic, statistical, and machine learning tools 

was applied to these data to identify genetic features associated with HIV-1 

neurotropism and neurovirulence.  

Results: 11 of 18 patients exhibited significant compartmentalization between 

blood and CSF-derived virus (p<0.01, Slatkin-Maddison test). A CSF-specific genetic 

signature was identified, comprising positions 9, 13, and 32 of the V3 loop.  CSF-

derived sequences exhibited constrained diversity, while containing fewer 

glycosylated and positively selected sites.  In addition, the presence of serine at 

position 5 of the V3 loop was highly correlated with neurocognitive deficit (p<0.0025, 

Fisher’s Exact test).  
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Conclusions: There are several genetic features that distinguish CSF- and plasma-

derived HIV-1 populations.  CSF-specific characteristics of HIV-1 env likely reflect 

altered cellular entry requirements and decreased immune pressure in the CNS.  

Furthermore, neurological impairment may be influenced by mutations within the V3 

loop. 

 
Keywords: HIV-1, evolution, compartmentalization, central nervous system 

INTRODUCTION 

HIV-1 and SIV cross the blood-brain barrier during primary infection, 

eventually resulting in neurological complications in up to 50% of untreated 

individuals (5,14,16,17,36,41,62).  HIV-associated dementia, encephalopathy, and 

sensory neuropathies contribute significantly to morbidity and mortality (27).  In 

addition, the central nervous system (CNS) serves as a sanctuary site for long-term 

viral persistence due to the suboptimal penetration of several antiretroviral agents (28). 

The CNS is a distinct viral reservoir, differing from peripheral tissues in 

immunological surveillance, cytokine milieu, target cell characteristics, and 

antiretroviral penetration.  Evidence from humans and chimpanzees suggests that 

selective pressure from anti-HIV neutralizing antibodies and cytotoxic T cells may be 

diminished in the brain and cerebrospinal fluid (13,26,34,45,51,56).  Cytokines such 

as IL-16, TNF-alpha, and RANTES that modulate HIV replication may differ in 

relative concentrations between the CNS and blood plasma (11).  The predominant 

targets of HIV-1 infection in the CNS are brain-derived macrophages and microglial 



   

 

111

cells, rather than the CD4+ lymphocytes that serve as targets in the periphery (10).  

Several antiretroviral drugs do not efficiently cross the blood-brain barrier, resulting in 

only partial suppression of viral replication in the central nervous system (28,52).   

The uniqueness of the CNS environment is often reflected in compartment-

specific HIV-1 genotypic and phenotypic characteristics.  Contemporaneous CNS- and 

blood-derived viruses are frequently compartmentalized based on phylogenetic 

analysis of intrapatient sequences (12,22,32,39,53,60), and brain-derived env 

sequences may share signature mutations across individuals (22,40).  Differences in 

CD4 dependence, coreceptor usage phenotype, and LTR sequence have been observed 

between brain-and blood-derived HIV isolates, reflecting differences in chemokine 

receptor expression and transcriptional environment between microglia and peripheral 

host cells (1,2,18,44,48,61).  The presence of discordant drug resistance mutations in 

CNS and plasma viral populations likely results from tissue-specific variation in drug 

efficacies due to the poor penetration of certain antiretroviral agents (53,60).  

Moreover, recent evidence suggests that the evolution of resistance may differ 

between brain subcompartments (50).  

HIV-1 RNA is detectable in the cerebrospinal fluid (CSF) of most infected 

individuals throughout disease.  Due to the obvious sampling difficulties associated 

with brain tissue, CSF virus has often been investigated as a proxy for brain-derived 

HIV-1 (studies of brain virus are almost exclusively limited to post-mortem samples).  

This indirect sampling strategy is supported by phylogenetic evidence that CSF and 

brain-derived viral populations are more closely related to each other than with 
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populations derived from bone marrow, kidney, liver, lung, lymph nodes, and spleen 

(46).  We sought to determine the genetic basis of HIV-1 neurotropism by 

systematically comparing CSF- and plasma-derived env sequences from eighteen 

chronically infected donors.  In addition we investigated the genetic basis of 

neurovirulence by comparing CSF-derived sequences from several individuals with 

known global deficit scores (GDS) based on a comprehensive neuropsychological 

evaluation. 

MATERIALS AND METHODS 

Subjects. Twenty-one individuals enrolled in longitudinal clinical studies at 

the HIV Neurobehavioral Research Center (HNRC) between 1998 and 2002 were 

studied.  All subjects had stable or no antiviral therapy for at least 2 months prior to 

study, had plasma and CSF HIV RNA of >500 copies/ml and had no evidence of 

systemic or CNS opportunistic infections or malignancy based on clinical, laboratory 

and neuro-imaging studies.  Data were available on past and present therapy, current 

HIV RNA and CD4 counts, nadir CD4 counts and CSF cell counts.  All studies were 

conducted in compliance with local IRB guidelines and with subjects’ written 

informed consent. 

Specimen processing. Paired blood from peripheral venipuncture in ACD 

tubes and CSF from lumbar punctures were collected (typically collected within one 

hour of each other) and processed within 2 hours of collection.  Plasma and cell free 

CSF were aliquoted, frozen and stored at –70o C until processing.  All subsequent 
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plasma and CSF processing was performed separately to minimize the within-subject 

cross contamination of samples. 

Nucleotide sequencing. Sequencing methods were previously described in full 

(53).  In brief, reverse transcription and PCR amplification of C2-V3 env for each 

sample was performed in triplicate or quadruplicate using the Finnzyme one step RT-

PCR kit (MJ Research, Waltham, MA) and primers V3Fout and V3Bout as previously 

described (1) in a 25µl reaction volume. 2.5µl of first step RT-PCR product was used 

in the second, nested PCR reaction with primers V3Fin and V3Bin (1).  All assays 

were conducted in conditions to minimize the potential for PCR contamination 

utilizing aerosol resistant pipet tips, dedicated PCR reagents and laminar flow hoods.  

All assays included negative controls.  Replicate PCR products were proportionately 

pooled and cloned using the TOPO-TA cloning system (Invitrogen, Carlsbad, CA). 

Purified plasmids were sequenced in both directions with –20M13 primer (5’-

gtaaaacgacggccag-3’)  and Topo Forward primer (5’-tggatatctgcagaattcg-3’ ) using 

Prism Dye terminator kits (ABI, Foster City, CA) on an ABI 3100 Genetic Analyzer.  

Sequences were compiled, aligned, and edited using Sequencher 4.0 (Genecodes, Ann 

Arbor, MI) and Clustal  (version 1.81).  

Neuropsychological assessment. Subjects completed a detailed 

neuropsychological assessment measuring their functioning in 8 cognitive ability 

domains: verbal functioning, abstraction, complex perceptual-motor skills, attention, 

learning, memory, motor skills and sensory functioning.  Test results were 

summarized as "deficit scores" which reflect the number and severity of impaired 
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performances throughout the test battery, and give relatively less weight to test 

performances within or above the average range. The demographically corrected T-

score for each test measure is converted to a zero to five point deficit rating, as 

follows: T>39 = 0 (no impairment), 35-39T = 1 point (mild impairment); 30-34T = 2 

points (mild to moderate impairment); 25-29T = 3 points (moderate impairment); 20-

24T = 4 points (moderate to severe impairment); T<20 = 5 points (severe impairment). 

A Global Deficit Score (GDS) is computed by adding the deficit ratings of the 

component test measures and dividing by the total number of measures. Deficit scores 

are sensitive to the presence and pattern of NP impairments in HIV+ individuals (16).  

Statistical classification of NP impaired/NP normal was made through the use of a 

GDS cut-off score that demonstrates high accuracy in predicting clinician ratings of 

NP status. A GDS of 0.5 or greater is considered to be in the impaired range.  This 

represents at least mild impairment on half of the tests of the NP battery (3). 

Phylogenetic reconstruction. Initial multiple sequence alignments were 

generated using ClustalX (54), with default gap parameters and the “IUB” DNA 

weight matrix. Subsequent manual aligning was performed using the Se-Al sequence 

alignment editor (43). Phylogenies describing sequences from each individual host 

were built using FastDNAml (33), estimating base frequencies from the data, Ts/Tv 

ratio of 2.0.  Diversity measurements were calculated using dnadist and protdist (7). A 

master tree describing the entire data set was built by implementing dnadist and 

neighbor within the Phylip 3.5c package (7) using the F84 model, Gamma distributed 

rates across sites, and Ts/Tv ratio of 2.0. Trees were viewed using TreeView X (35).  



   

 

115

Evaluation of compartmentalization. The degree of segregation between 

compartments was assessed by testing for panmixis using gene phylogenies (19,49) as 

implemented in MacClade (Sinauer, Sunderland, MA).  In brief, the minimum 

possible number of inter-compartment migration events was tallied, based on the 

maximum likelihood trees for each individual subject’s C2-V3 sequences and their 

characterization according to compartment of origin.  This result was compared to the 

distribution of migration events in 1000 trees in which the taxa have been randomly 

shuffled across tips, retaining the original topology and associated polytomies (31).  

Evidence of restricted gene flow (compartmentalization) was documented when <1% 

of the randomized trees required the same or a fewer number of migration events as 

for the sample data (49). 

Calculation of Shannon entropy. Residue specific entropy was computed 

from the frequency f(Ai) of amino acid A at position i according to  -∑A f(Ai) 

ln[f(Ai)]. 

Machine learning classification. A machine learning approach was employed 

to look for a tissue-specific genetic signature.  All classification experiments in this 

analysis were conducted using WEKA (Waikato Environment for Knowledge 

Analysis), an open- source collection of  data-processing  and  machine learning 

algorithms (58).  The J48 decision tree inducer, based on the C4.5 algorithm (42) was 

implemented with the parameter “MinNumObj” set at a value of 11 to limit the 

complexity of theories and minimize the risk of over-fitting.  Classifiers were 

evaluated using one hundred iterations of stratified ten-fold cross-validation, a 
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procedure designed to reflect the performance of classification models on novel data 

sets.  For each of 100 trials, the data set was randomly divided into 10 groups of 

approximately equal size and class distribution. For each “fold,” the classifier was 

trained using all but 1 of the 10 groups and then tested on the unseen group. This 

procedure was repeated for each of the 10 groups. The cross-validation score for 1 trial 

was the average performance across each of the 10 training runs. The reported score is 

the average across the 100 trials (58). 

Analysis of selection. We used maximum likelihood methods that fit 

independent synonymous (alpha) and non-synonymous (beta) rate parameters to each 

site in the codon alignment. For codon site s, we tested the hypothesis of differential 

selection between two populations (alpha_1, beta_1, alpha_2 and beta_2 estimated by 

maximum likelihood), versus the null hypothesis of identical selection (beta_1 = R 

alpha_1, beta_2 = R alpha_2, with alpha_1, alpha_2 and R estimated by maximum 

likelihood) using the likelihood ratio test, and the chi-squared (one degree of freedom) 

distribution to assess significance (25).  Other phylogenetic parameters, such as branch 

lengths, base frequencies and nucleotide substitution biases were estimated from each 

individual alignment and held constant during subsequent site comparisons. 

Coreceptor usage prediction. A previously trained machine learning 

algorithm (support vector machine) was employed to predict the coreceptor usage of 

viruses based on V3 loop amino acid sequence (37).  This method is reported to 

predict CXCR4 usage with a specificity of 93% (20).  The coreceptor classifier is 

available for public use at: http://genomiac2.ucsd.edu:8080/wetcat/tropism.html 
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RESULTS  

Compartmentalization of CSF-derived virus. 

To determine the genetic characteristics of cerebrospinal fluid-derived HIV-1, 

we generated and analyzed 456 clonal CSF and plasma env sequences from eighteen 

chronically infected individuals.  If the CSF represents a distinct viral compartment, 

contemporaneous CSF- and plasma-derived sequences are expected to cluster 

independently (31).  We previously demonstrated that independent clustering of 

tissue-specific populations was observed in eleven of these eighteen individuals (53), 

determined by applying the parsimony-based cladistic method of Slatkin and 

Maddison to maximum likelihood phylogenetic reconstructions (49).  However, inter-

population gene flow may be underestimated by this approach, due to the potential 

loss of polytomies in the randomly generated trees used to evaluate statistical 

significance (30).  We circumvented this issue by modifying the Slatkin-Maddison 

test; we generated 1000 random trees in which the taxa have been randomly shuffled 

across tips, retaining the original topology and associated polytomies.  Evidence of 

restricted gene flow (compartmentalization) was documented when <1% of the 

randomized trees required the same or a fewer number of migration events as for the 

sample data.  The results of this more stringent test of panmixis did not conflict with 

our original findings.  Eleven of eighteen individuals (individuals A, F, H, J, M-S) in 

this cohort exhibited independent clustering of tissue-specific populations (p<0.01), 

while two of the remaining seven individuals (B, L) harbored variants that exhibited 

partial compartmentalization between tissues (0.01<p<0.05) (Fig. 1). 
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Amino acid diversity in plasma- and CSF-derived viral populations.  

We next calculated the amino acid diversity of C2-V3 sequences from CSF 

and plasma, focusing on average pairwise distances derived using the Dayhoff PAM 

substitution matrix.  There was no significant difference in overall protein diversity 

between CSF- and plasma-derived sequences pooled across all eighteen individuals 

(data not shown).  When focusing exclusively on the V3 loop subregion, however, 

there was a significant reduction of diversity in CSF-derived sequences (p<0.05, 

paired Wilcoxon) (Fig. 2).  Tissue-specific patterns of diversity did not differ between 

compartmentalized and non-compartmentalized individuals. 

Correlation between infection date and HIV-1 genetic diversity.  

Several reports suggest that HIV-1 intrapatient diversity is correlated with 

duration of infection and disease stage (47,59).  We investigated this relationship by 

comparing CSF- and plasma-derived viral genetic diversity at the nucleotide level 

against date of infection (as reported by the infected individual).  A moderately 

positive correlation existed between plasma viral diversity and infection date 

(R2=0.27) (Fig. 3).  No correlation, however, was apparent between CSF viral 

diversity and infection date. 

 

CSF-specific Env genetic signature.  

CSF-derived viruses may share genetic characteristics across individuals due to 

tissue-specific selective pressures that are common across hosts.  We employed a 

previously described machine learning approach to look for evidence of a genetic 



   

 

119

signature shared by CSF-derived sequences pooled across individuals (38).  The j48 

decision tree inducer (based on the Quinlan C4.5 algorithm) was implemented to 

classify Env sequences from all individuals based on tissue of origin.  The training 

data for this experiment drew samples from the entire available sequence set, 

consisting of 231 plasma sequences and 225 from CSF. Our results (data not shown) 

indicated that there was no evidence of a signature, due to the high error rate 

associated with the classification trial; sequence tropism was misclassified in nearly 

50% of test cases.  However, when we limited our analysis to the 94 plasma and 130 

CSF sequences associated with compartmentalized individuals (A, F, H, J, M-S), 

classification accuracy (conservatively estimated using a cross-validation procedure) 

increased dramatically to 87%.  The genetic signature underlying the classification 

model consisted of positions 5, 9, 13, and 19 of the V3 loop (HXB2 gp160 positions 

300, 304, 308, and 314, respectively) (Fig. 4).  The presence of proline or histidine at 

V3 loop position 13 (gp160 position 308) was significantly correlated with 

compartmentalization in the CNS (p<0.044, Fisher’s Exact test).  Compartmental 

differences in relative amino acid composition at these signature sites are evident in 

Env alignments of each individual’s sequences (Supplementary Fig. 1) and in (pooled) 

consensus sequence logos (Fig. 5). 

Comparison of site-specific entropy.  

To determine if any specific Env residues exhibited discordant levels of 

conservation between tissues, we assessed the variability at each site in our amino acid 

alignment by calculating site-specific Shannon entropy scores.  Entropy estimates 
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account for both the total number and relative frequencies of different residues at a 

site.  Our analysis of the C2-V3 region revealed that several sequence positions had 

highly divergent Shannon entropy scores in CSF and plasma (Fig. 6).  The five highest 

net differences in entropy were observed at positions 304, 308, 340, 341, and 360 

(numbered according to the HXB2 gp160 sequence).  Sites 304 and 308 are located in 

the V3 loop region. 

Identification of discordantly selected sites.  

We used a maximum likelihood approach to identify codons within env that 

were under discordant selection pressure in CSF and plasma.  Selection pressure is 

described as the ratio between nonsynonymous substitutions per nonsynonymous site 

(dN) and synonymous substitutions per synonymous site (dS) (29).  A total of seven 

sites in the C2-V3 region exhibited discordant levels of selection pressure (dN/dS) in 

CSF and plasma, based on a differential p-value cutoff of 0.1 (Table 1).  Five out of 

these seven sites were under strong negative selection in CSF while corresponding 

sites were being positively selected or evolving neutrally in blood plasma (Table 1).  

These data are in alignment with our compartment-specific maximum likelihood 

estimates of global dN/dS across the C2-V3 region.  CSF-derived HIV-1 sequences 

exhibited considerably lower dN/dS values than plasma-derived sequences (data not 

shown). 

N-linked glycosylation in plasma- and CSF-derived viral populations.  

We next examined N-linked glycosylation patterns across the C2-V3 env 

subregion, to investigate variation in selection pressure from the neutralizing antibody 
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response (57). If the antibody response is attenuated in the central nervous system, we 

might expect fewer glycosylation sites within CSF-derived viral sequences. If the 

response is equivalent, but targeting different epitopes, we might expect a 

reassortment of sites though the overall number may remain constant.  Our analysis 

revealed that extent of glycosylation, reported as average number of glycosylation 

sites (sequons) per sequence tended to be lower in CSF-derived viruses, although this 

trend was not quite significant (p<0.062, paired Wilcoxon) (Fig. 7).  Virus from seven 

out of eleven compartmentalized individuals exhibited significantly different levels of 

glycosylation between compartments (p<0.05, Mann-Whitney), and five out of these 

seven had lower numbers of sequons in CSF-derived sequences (Fig. 7).     

Prediction of coreceptor usage.  

We predicted the chemokine receptor preferences for all sequences in our data 

set to determine if neurotropism was correlated with skewed coreceptor usage. We had 

previously reported that predicted coreceptor usage did not differentiate between CSF- 

and plasma-derived populations (53) when using the “11/25” rule to predict phenotype 

(8).  However, predicting coreceptor usage based on the presence of a basic residue at 

V3 loop position 11 and/or 25 is not entirely reliable, and tends to underestimate 

CXCR4 usage (20).  We revisited this issue by predicting phenotypes using a 

previously trained machine learning algorithm (37) that is significantly more sensitive 

to the CXCR4 class (20).  Our reanalysis reinforced the original finding that 

coreceptor phenotype does not differ between CSF- and plasma-derived viral 

populations.  The vast majority of sequences from both compartments were predicted 
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to use CCR5 as a coreceptor, although a subset of plasma clones in two individuals (I 

and M) were predicted to use CXCR4 (data not shown). 

Correlation between Env sequence and neurovirulence.  

All of the subjects involved in this study underwent a comprehensive 

neuropsychological assessment measuring their functioning in 8 cognitive ability 

domains: verbal functioning, abstraction, complex perceptual-motor skills, attention, 

learning, memory, motor skills and sensory functioning.  Test results were 

summarized as "deficit scores" which reflect the number and severity of impaired 

performances throughout the test battery.  Global deficit scores (GDS) in this cohort 

ranged from 0.31 (normal) to 3.5 (moderate to severe impairment) (Table 2).  We 

looked for correlations between HIV-1 Env sequence and cognitive deficit scores 

using machine learning-based regression analysis.  The residue at position 5 of the V3 

loop (HXB2 gp160 position 300) was most strongly correlated with GDS.  The 

presence of serine at position 5 was significantly correlated with topmost quartile 

global deficit scores (p<.0025, Fisher’s Exact Test) (Table 2).  

DISCUSSION  

The results of our investigation reveal that the genetics of cerebrospinal fluid- 

and blood plasma-derived strains of HIV-1 differ on several levels, confirming 

previous reports that HIV-1 within the central nervous system can differ from virus in 

peripheral tissues.  This study extends those observations by cataloguing the CSF-

specific population genetic features of the HIV-1 quasispecies.  First, the CNS (as 
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represented by cerebrospinal fluid) can function as a viral compartment in most, but 

not all infected individuals.  Second, sequence diversity of the V3 loop Env subregion 

measured at the amino acid level is reduced in CSF-derived viral populations. Third, 

there is a CSF-specific HIV-1 genetic signature associated with sequences from 

compartmentalized individuals comprising 4 sites within the V3 loop region.  Fourth, 

several sites in the viral envelope are under different levels of selective constraint in 

CSF and plasma, and exhibit discordant levels of entropy in these tissues.  Lastly, 

CSF-derived viruses tend to be less glycosylated than blood-derived viruses.  

Viral compartments are characterized by a restriction of gene flow between 

cells or tissues, usually identified by phylogenetic analysis (30,38).  In this study, viral 

compartmentalization between blood and the central nervous system was identified in 

13 out of 18 individuals.  Viral migration across the blood-brain barrier was minimal 

and infrequent in these individuals, which reinforces the concept that a significant 

fraction of virus sampled in CSF is produced locally in the CNS (46).  Furthermore, 

CSF-derived V3 loop sequences were under stronger negative selection and exhibited 

reduced levels of amino acid diversity.  These genetic characteristics likely reflect 

constraints associated with tissue-specific cellular entry determinants and reduced 

immune selection pressure in the CNS (1,34,48).  A low viral effective population size 

in the CNS may contribute to the reduced diversity as well (24), and is reinforced by 

our observed lack of correlation between duration of infection and CSF-derived HIV-1 

diversity.  The positive correlation between genetic diversity of plasma virus and 

infection date, however, is concordant with observations that sequence diversity often 
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diminishes during late stages of disease, due to a lack of diversifying selection 

attributed to immune collapse and target cell homogeneity (47,59). 

The identification of a CSF-specific HIV-1 genetic signature across 

compartmentalized individuals is strong evidence that the viral quasispecies adapts to 

the local fitness landscape within the CNS, and moreover, that commonalities in this 

selective environment exist across individuals.  Position 308 (V3 loop position 13) 

was the most informative sequence position.  The contribution of position 308 to HIV-

1 neurotropism is highlighted by its discordant entropy scores in CSF and plasma and 

by the fact that it has been featured in the reports of multiple investigators over the last 

decade (22,40).  In addition, the presence of certain residues at position 308 has been 

associated with macrophage tropism, which is most likely correlated with microglial 

tropism due to the extensive similarities between these cell types (4).  Understanding 

the relevance of this sequence position to neurotropism and neuropathogenesis may be 

achieved by infecting in vitro fetal brain aggregates (55) or microglial cell cultures 

with genetically defined HIV-1 strains to determine the fitness consequences 

associated with p308 polymorphisms.    

Our exploration of the relationship between cognitive deficit in the host and 

viral genetics suggests that V3 loop sequence may be a genetic determinant of 

neurovirulence (23).  The contribution of V3 loop position 5 to neurovirulence may 

result from accelerated pathogenesis due to improved replicative capacity within the 

CNS (6).  However, HIV-1 neurotropism and neurovirulence may be disctinct and 

separable phenomena (39).  Although certain Env mutations may not enhance the 
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replication kinetics of HIV-1 within the CNS, they may increase gp160-mediated 

neurotoxicity due to alterations in interactions between virion surface glycoproteins 

and host cell surface molecules (21). 

 The central nervous system has been characterized as a reservoir, a 

compartment, and a drug sanctuary (9,15).  Our investigations characterize the 

differing selection pressures between the CSF and blood and document a specific 

genetic signature of virus compartmentalized in the central nervous system. Taken 

together, these data offer important insights into the adaptation of HIV to the CNS 

environment, which may prove valuable in managing HIV-1 infection and preventing 

the development of neurological disorders. 
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FIGURES AND TABLES 

 

 

 

Table 1: Sites within env C2-V3 under differential selective pressure in plasma and 
CSF 

 

HXB2 env 
position CSF (dN/dS) Plasma (dN/dS) Differential 

p-value Transition type 

249 0.0000/ 1.5313 0.1499/ 0.0000 0.0923 Negative->Neutral

250 0.0000/ 0.8244 0.1313/ 0.0000 0.0947 Negative->Neutral

251 0.2539/ 0.0000 0.0000/ 1.3152 0.0499 Neutral->Negative

255 0.0000/ 2.0299 0.4633/ 1.6224 0.0795 Negative->Neutral

286 0.0000/ 0.8520 1.1051/ 0.0000 0.0131 Negative->Positive

330 0.0000/ 3.2736 0.3629/ 0.9094 0.0694 Negative->Neutral

346 1.5486/ 0.0000 0.9555/ 0.4798 0.092 Positive->Neutral
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Table 2: Global deficit scores (GDS) and consensus residues at position 5 of the V3 
loop in CSF- and plasma-derived sequences from all individuals with 
neuropsychologic data.  Individuals listed from highest to lowest cognitive deficit. 

 

 

 

 

individual p5-CSF p5-plasma GDS 
R S S 3.5 
S H N 2.88 
B S S 2.13 
E S S 1.41 
O S N 1.4 
A N N 1.28 
P N N 1.18 
Q N N 0.94 
F N N 0.88 
J N N 0.75 
D N N 0.69 
L N N 0.63 
M N N 0.56 
H G G 0.53 
K N N 0.5 
C N N 0.44 
N G G 0.31 
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Figure 1: Examples of compartmentalized and noncompartmentalized viral 
populations. Maximum likelihood phylogenies of C2-V3 env sequences.  Red circles = 
individual L (compartmentalized virus) and blue circles = individual N 
(noncompartmentalized virus).  Open circles represent CSF sequences, and closed 
circles indicate plasma-derived sequences.  Strains ADA, NY5, JRFL, and SF162 
included as outgroups. Scale bar equals 10% genetic distance. 
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Figure 2: V3 amino acid diversity in CSF- and blood-derived viral populations. 
Diversity was significantly lower in CSF-derived viral populations across individuals 
(P < 0.01, Wilcoxon test).  Green circles indicate compartmentalized individuals.  
Vertical bars represent standard error. 
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Genetic Diversity vs. Date of Infection

R2 = 0.2718
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Figure 3. Genetic diversity vs. date of infection (as reported by infected individual).  
There is a positive correlation between infection date and plasma diversity (R2=0.27), 
in accordance with observations that individuals with advanced disease tend to harbor 
relatively homogeneous viral populations in blood plasma.  There is no correlation 
between infection date and CSF viral diversity.  
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Figure 4. Genetic signature associated with CSF-derived sequences from 
compartmentalized individuals.  Decision tree classifying V3 sequences based on 
tissue of origin with 87% accuracy. p, plasma classification; c, CSF. The values in 
parentheses are the number of instances/number of incorrect classifications. Residues 
are numbered starting from the cysteine at the beginning of the V3 loop. 
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a) 

 

 

 

b) 

 

 

Figure 5. Consensus V3 loop sequences of a) CSF and b) plasma.  The overall height 
of each position is proportional to its conservation.  Relative height of each amino acid 
reflects its prevalence at that site.  The prevalence of proline and histidine at position 
13 are significantly higher in CSF sequences. 
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Figure 6: Difference in Shannon entropy between CSF and plasma at sites across the 
Env C2-V3 region.  The five sites with the highest net differences are labeled with 
position numbers (numbered according to HXB2 gp160).  Position 308 (V3 loop 
position 13), circled in red, exhibited the greatest net difference in entropy out of all 
C2-V3 amino acid sites. 
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Figure 7. Extent of glycosylation (number of N-linked glycosylation sites) in CSF- 
and plasma-derived C2-V3 sequences. Green circles indicate compartmentalized 
individuals.  Red asterisks indicate significan differences between compartments 
(p<0.05, Mann-Whitney).  Vertical bars represent standard error.  7 out of 11 
compartmentalized individuals have significantly different numbers of glycosylation 
sites in CSF- and plasma-derived sequences, and 5 out of those 7 have greater 
numbers in plasma populations. 
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Individual A 

Consensus    CTRPNNNTRR SISIGPGRAF YATGAIIGNI RQAHC 
A-01C        ---------- --P------- --I-----D- ----- 
A-04C        ---------- --H------- ---------- ----- 
A-05C        ---------- --H------- ---------- ----- 
A-07C        ---------- ---------- ---------- ----- 
A-08C        ---------- --H------- ---------- ----- 
A-09C        ---------- --H------- ---------- ----- 
A-10C        ---------- --H------- ---------- ----- 
A-11C        ---------- --H------- ---------- ----- 
A-12C        ---------- --H------- ---------- ----- 
A-13C        ---------- --H------- ---------- ----- 
A-14C        ----S----- ---------- --------D- ----- 
A-15C        ---------- --H------- ---------- ----- 
A-01P        ---------- ---------- ------T--- ----- 
A-02P        ---------- ---------- ------T-D- ----- 
A-03P        ---------- ---------- ------T--- ----- 
A-04P        ---------- ---------- ------T-D- ----- 
A-05P        ---------- ---------- ------T-D- ----- 
A-06P        ---------- --P------- ------T--- ----- 
A-08P        ---------- ---------- ---------- ----- 
A-09P        ---------- ---------- ---------- ----- 
A-10P        ---------- ---------- ---------- ----- 
A-11P        ---------- ---------- ---------- ----- 
A-12P        ---------- ---------- ---------- ----- 
A-13P        ---------- ---------- ---.G---D- ----- 
A-14P        ---------- ---------- ---.----D- ----- 
A-15P        ---------- ---------- ------T--- ----- 35 
 

 

Supplementary Figure 1. V3 loop amino acid alignments of CSF- and plasma-derived 
sequences from individuals with compartmentalized virus (A, F, H, J, M-S).  The first 
sequence in each alignment is a consensus of all available clones, dashes represent 
identity, and dots symbolize gaps (deletions).  Sequence names contain clone numbers 
and tissue of origin (“C” = CSF, “P” = plasma).  Compartment-specific consensus 
residues differed most frequently at position 13. 
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Individual F 

Consensus    CTRPNNNTMK SIHLGPGRAF YTTGSIIGDI RQAYC 
F-01C        ---------- ---------- ---------- ----- 
F-02C        ---------- ---------- ---------- ----- 
F-03C        --------R- ---------- ---------- ----- 
F-04C        ---------- ---------- ---------- ----- 
F-06C        ---------- ---------- ---------- ----- 
F-07C        --------R- -----L---- -A--D----- ----- 
F-08C        --------R- -----L---- -A--D----- ----- 
F-09C        --------R- -----L---- -A--D----- ----- 
F-11C        --------R- -----L---- -A--D----- ----- 
F-13C        --------R- -----L---- -A--D----- ----- 
F-14C        --------R- -----L---- -A--D----- ----- 
F-15C        --------R- -----L---- -A--D----- ----- 
F-02P        ---------- --RF---S-- ---------- -K--- 
F-04P        ---------- --RF---S-- ---------- -K--- 
F-05P        ---------- --RF---S-- ---------- -K--- 
F-06P        ---------- --RF---S-- --------N- -K--- 
F-07P        ---------- --RF---S-- ----I---N- -K--- 
F-08P        ---------- --RF---S-- ---------- -K--- 
F-09P        ---------- --RF---S-- ---------- -K--- 
F-10P        ---------- ---------- ---------- ----- 
F-11P        ---------- --RF---S-- ---------- -K--- 
F-12P        ---------- --RF---S-- ---------- -K--- 
F-13P        --------R- -----L---- -A--D----- ----- 
F-14P        ---------- --RF---S-- ---------- -K--- 
F-15P        ---------- --RF---S-- ---------- -K--- 35 
 

 

Supplementary Figure 1 (cont’d). V3 loop amino acid alignments of CSF- and plasma-
derived sequences from individuals with compartmentalized virus (A, F, H, J, M-S).  
The first sequence in each alignment is a consensus of all available clones, dashes 
represent identity, and dots symbolize gaps (deletions). Sequence names contain clone 
numbers and tissue of origin (“C” = CSF, “P” = plasma).  Compartment-specific 
consensus residues differed most frequently at position 13. 
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Individual H 

Consensus    CTRPGNNTRK SITIGPGRAF YATGDIIGDI RQAHC 
H-01C        ---------- ---------- --------N- ----- 
H-02C        ---------- -------S-- --------N- ----- 
H-03C        ---------- ---------- --------N- ----- 
H-06C        ---------- ---------- ----E?--N- ----- 
H-08C        ---------- ---------- ---------- ----- 
H-09C        ---------- ---------- --------?- ----- 
H-12C        ---------- ---------- ---------- ----- 
H-13C        ---------- ---------- ---------- ----- 
H-14C        ---------- ---------- --------N- ----- 
H-15C        ---------- -------S-- --------N- ----- 
H-01P        ---------- ---------- ---------- ----- 
H-02P        ---------- ---------- -----?---- ----- 
H-04P        ---------- ---------- ---------- ----- 
H-05P        ---------- ---------- ---------- ----- 
H-06P        ---------- -V-------- ---------- ----- 
H-07P        ---------- ---------- ---------- ----- 
H-08P        ---------- ---------- ---------- ----- 
H-10P        ---------- ---------- ----.----- ----- 
H-11P        ---------- ---------- ---------- ----- 
H-13P        ---------- ---------- ---------- ----- 
H-14P        ---------- ---------- ---------- ----- 
H-15P        ---------- ---------- ---------- ----- 35 
 

 

Supplementary Figure 1 (cont’d). V3 loop amino acid alignments of CSF- and plasma-
derived sequences from individuals with compartmentalized virus (A, F, H, J, M-S).  
The first sequence in each alignment is a consensus of all available clones, dashes 
represent identity, and dots symbolize gaps (deletions). Sequence names contain clone 
numbers and tissue of origin (“C” = CSF, “P” = plasma).  Compartment-specific 
consensus residues differed most frequently at position 13. 
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Individual J 

Consensus    CTRPNNNTRK GIPMGPGKFY ATGEIIGNIR QAHC 
J-01C        ---------- S--------F -QEQ------ ---- 
J-02C        ---------- S--------- ---A------ ---- 
J-03C        ---------- S--------- ---A------ ---- 
J-04C        ---------- S--------- ---A------ ---- 
J-05C        ---------- ---------- ---------- ---- 
J-06C        ---------- S--I------ ---------- ---- 
J-07C        ---------- S--------- ---A------ ---- 
J-09C        ---------- S--------- ---A------ ---- 
J-11C        ---------- ---------- ---------- ---- 
J-12C        ---------- S--------- ---A------ ---- 
J-13C        ---------- S--------- ---------- ---- 
J-14C        ---------- ---------- ---------- ---- 
J-15C        ---------- S--------- ---A------ ---- 
J-01P        ---------- --HIE----- ---------- ---- 
J-02P        ---------- --H------- ---------- ---- 
J-03P        ---------- --HI------ ---------- ---- 
J-04P        ---------- --HI---E-- ---------- ---- 
J-05P        -------I-- --HI------ ---------- ---- 
J-06P        ---------- --HI------ ---------- ---- 
J-08P        ---------- --HI------ ---------- ---- 
J-09P        ---------- --HI------ ---------- ---- 
J-10P        ---------- --HI------ ---------- ---- 
J-11P        ---------- --HI------ ---------- ---- 
J-12P        ---------- --HI------ ---------- ----34 
 

Supplementary Figure 1 (cont’d). V3 loop amino acid alignments of CSF- and plasma-
derived sequences from individuals with compartmentalized virus (A, F, H, J, M-S).  
The first sequence in each alignment is a consensus of all available clones, dashes 
represent identity, and dots symbolize gaps (deletions). Sequence names contain clone 
numbers and tissue of origin (“C” = CSF, “P” = plasma).  Compartment-specific 
consensus residues differed most frequently at position 13. 
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Individual M 

Consensus    CTRPNNNTRR SIHIGPGKAF YTGDIIGNIR QAHC 
M-01C        ---------- ---------- -------D-- ---- 
M-02C        --G------- -------R-- ---------- ---- 
M-03C        ---------- -------R-- ---------- ---- 
M-04C        ---------- ---------- ---------- ---- 
M-05C        ---------- ---------- ---------- ---- 
M-07C        ---------- -------R-- ---------- ---- 
M-08C        -A-------- ---------- ---------- ---- 
M-09C        ---------- ---------- ---------- ---- 
M-10C        ---------- ---------- ---------- ---- 
M-11C        ---------- ---------- ---------- ---- 
M-12C        ---------- ---------- ---------- ---- 
M-13C        ---------- -------R-- ---------- ---- 
M-14C        ---------- ---------- ---------- ---- 
M-15C        ---------- ---------- ---------- ---- 
M-01P        ---------- --T------- -------D-- ---- 
M-02P        ---------- --T------- -------D-- ---- 
M-03P        ------KKKI RHIH-H-RT- -----Q-KL- ---- 
M-04P        ---------- --T------- ---------- ---- 
M-05P        ---------- --T------- -------D-- ---- 
M-06P        ---------- --T------- -------D-- ---- 
M-07P        ---------- --T------- -------D-- ---- 
M-08P        ------KKKI RHIH-H-RT- -----Q-KL- ---- 
M-09P        ---------- -------R-- ---------- ---- 
M-10P        ------KKKI RHIH-H-RT- -----Q-KL- ---- 
M-11P        ---------- --T------- -------D-- ---- 
M-12P        ---------- --T------- -------D-- ---- 
M-13P        ------KKKI RHIH-H-RT- -----Q-KL- ---- 
M-14P        ---------- --T------- -------D-- ---- 
M-15P        ------KKKI RHIH-H-RT- -----Q-EL- ----34 
 

Supplementary Figure 1 (cont’d). V3 loop amino acid alignments of CSF- and plasma-
derived sequences from individuals with compartmentalized virus (A, F, H, J, M-S).  
The first sequence in each alignment is a consensus of all available clones, dashes 
represent identity, and dots symbolize gaps (deletions). Sequence names contain clone 
numbers and tissue of origin (“C” = CSF, “P” = plasma).  Compartment-specific 
consensus residues differed most frequently at position 13. 
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Individual N 

Consensus    CTRPGNNTRK GIHLGPGRTF YATGEITGDI RQAHC 
N-C01        ---------- ---------- ---------- ----- 
N-C02        ---------- ---------- ---------- ----- 
N-C03        ---------- ---------- ---------- ----R 
N-C05        ---------- ---------- ---------- ----- 
N-C06        ---------- ---------- ---------- ----- 
N-C07        ---------- ---------- ---------- ----- 
N-C08        ---------- ---------- ---------- ----- 
N-C09        ---------- ---------- ---------- ----- 
N-C10        ---------- ---------- ---------- ----- 
N-C11        ---------- ---------- -----M---- ----- 
N-C12        ---------- ---------- ---------- ----- 
N-C13        ---------- ---------- ---------- ----- 
N-C14        ---------E ---------- -----M---- ----- 
N-C15        ---------- ---------- ---------- ----- 
N-P01        --------S- S-------A- ----R-I-N- ----- 
N-P02        ---------- S-N-----A- ----N-I--- ---Y- 
N-P03        ---------- S-N-----A- ----N-I--- -R-Y- 
N-P04        --------S- S-------A- ---------- ----- 
N-P05        --------S- S-------A- ----R-I-N- ----- 
N-P06        --G------- ---------- ---------- ----- 
N-P07        --------S- S-------A- ----R-I-N- ----- 
N-P08        --------S- S-------A- ----R-I-N- ----- 
N-P09        --------S- S-------A- ----R-I-A- ----- 
N-P10        --------S- S-------A- ----R-I-N- ----- 
N-P11        --------S- S-------A- ----R-I-N- ----- 
N-P12        --------S- S-------A- ----R-I-N- ----- 
N-P13        --------S- S-------A- ----R-I-N- ----- 
N-P14        --------S- S-------A- ----R-I-N- ----- 
N-P15        --------S- S-------A- ----R-I-N- ----- 35 
 
 
Supplementary Figure 1 (cont’d). V3 loop amino acid alignments of CSF- and plasma-
derived sequences from individuals with compartmentalized virus (A, F, H, J, M-S).  
The first sequence in each alignment is a consensus of all available clones, dashes 
represent identity, and dots symbolize gaps (deletions). Sequence names contain clone 
numbers and tissue of origin (“C” = CSF, “P” = plasma).  Compartment-specific 
consensus residues differed most frequently at position 13. 
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Individual O 

Consensus    CTRPSNNTNR SINIGPGRAF YATERITGDI RQAHC 
O-C01        ---------- ---------- ---------- ----- 
O-C02        ---------- ---------- ---------- ----- 
O-C03        ---------- ---------- ---------- ----- 
O-C04        ---------- ---------- ---------- ----- 
O-C05        ---------- ---------- ---------- ----- 
O-C06        ---------- ---------- ---------- ----- 
O-C07        ---------- ---------- ---------- ----- 
O-C09        ---------- ---------- ---------- ----- 
O-C10        ---------- ---------- ---------- ----- 
O-C11        ------D--- ---------- ---------- ----- 
O-C12        ---------- ---------- ---------- ----- 
O-C13        R--------- ---------- ---------- ----- 
O-C14        ---------- ---------- ---------- ----- 
O-C15        ---------- ---------- ---------- ----- 
O-P02        ----N---K- ---------W -G-G.-I--- ----- 
O-P03        ----N---K- ---------W -G-G.-I--- ----- 
O-P04        ----N---K- ---------W -G-G.-I--- ----- 
O-P05        ----N---K- ---------W -G-G.-I--- ----- 
O-P06        ----N---K- ---------W -G-G.-I--- ----- 
O-P07        ----N---K- ---------W -G-G.-I--- ----- 
O-P08        ----N---K- ---------W -G-G.-I--- ----- 
O-P09        ----N---K- ---------W -G-G.-I--- ----- 
O-P10        ----N---K- ---------W -G-G.-I--- ----- 
O-P12        ----N---K- ---------W -G-G.-I--- ----- 35 
 

Supplementary Figure 1 (cont’d). V3 loop amino acid alignments of CSF- and plasma-
derived sequences from individuals with compartmentalized virus (A, F, H, J, M-S).  
The first sequence in each alignment is a consensus of all available clones, dashes 
represent identity, and dots symbolize gaps (deletions). Sequence names contain clone 
numbers and tissue of origin (“C” = CSF, “P” = plasma).  Compartment-specific 
consensus residues differed most frequently at position 13. 
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Individual P 

Consensus    CTRPNNNTRK GLHTGPGRTL YVTRAIIGDI RQAHC 
P-C03        ---------- ---------- ---------- ----- 
P-C04        ---------- ---------- ---------- ----- 
P-C05        ---------- ---------- ---------- ----- 
P-C07        ---------- ---------- ---------- ----- 
P-C08        ---------- ---------- ---------- ----- 
P-C10        ---------- ---------- ---------- ----- 
P-C11        ---------R ---------- ---------- ----- 
P-C15        ---------- ---------- ---------- ----- 
P-P03        ---------- -I-I---S-W ---G------ ----- 
P-P04        ---------- ---------- ---------- ----- 
P-P06        ---------- SI-------- ---GD----- ----- 
P-P07        ---------- -I-I---S-W ---G------ ----- 
P-P08        ---------- -I-I---S-W ---G------ ----- 
P-P09        ---------- SI-------- ---GD----- ----- 
P-P10        ---------- -I-I---S-W ---G------ ----- 
P-P12        ---------- -I-I---S-W ---G------ ----- 
P-P13        ---------- -I-I---S-W ---G------ ----- 
P-P15        ---------- ---------- ---------- ----- 35 
 

Supplementary Figure 1 (cont’d). V3 loop amino acid alignments of CSF- and plasma-
derived sequences from individuals with compartmentalized virus (A, F, H, J, M-S).  
The first sequence in each alignment is a consensus of all available clones, dashes 
represent identity, and dots symbolize gaps (deletions). Sequence names contain clone 
numbers and tissue of origin (“C” = CSF, “P” = plasma).  Compartment-specific 
consensus residues differed most frequently at position 13. 
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Individual Q 

Consensus    CIRPNNNTRK SIPVGPGKAL YTTGEIIGEI RQAHC 
Q-C01        ---------- ---------- ---------- ----- 
Q-C02        ---------- ---------- ---------- ----- 
Q-C03        ---------- ---------- ---------- ----- 
Q-C04        ---------- ---------- ---------- ----- 
Q-C05        ---------- ---------- ---------- ----- 
Q-C06        ---------- ---------- ---------- ----- 
Q-C07        ---------- ---------- ---------- ----- 
Q-C08        ---------- ---------- ---------- ----- 
Q-C09        ---------- ---------- ---------- ----- 
Q-C10        ---------- ---------- ---------- ----- 
Q-C11        ---------- ---------- ---------- ----- 
Q-C12        ---------- ---------- ---------- ----- 
Q-C13        ---------- ---------- ---------- ----- 
Q-C14        ---------- ---------- ---------- ----- 
Q-C15        ---------- ---------- ---------- ----- 
Q-P01        -T-------- --SI---R-F ----D---D- ----- 
Q-P02        -T-------- --SI---R-F ----D---D- ----- 
Q-P03        -T-------- --SI---R-F ----D---D- ----- 
Q-P05        -T-------- --SI---R-F ----D---D- ----- 
Q-P06        -T-------- --SI---R-F ----D---D- ----- 
Q-P08        -T-------- --SI---R-F ----D---D- ----- 
Q-P09        -T-------- --SI---R-F ----D---D- ----- 
Q-P10        -T-------- --SI---R-F --------D- ----- 
Q-P12        -T-------- --SI---R-F ----D---D- ----- 
Q-P13        -T-------- --SI---R-F --------D- ----- 
Q-P14        -T-------- --SI---R-F --------D- ----- 
Q-P15        ---------- ---------- ---------- ----- 35 
 

Supplementary Figure 1 (cont’d). V3 loop amino acid alignments of CSF- and plasma-
derived sequences from individuals with compartmentalized virus (A, F, H, J, M-S).  
The first sequence in each alignment is a consensus of all available clones, dashes 
represent identity, and dots symbolize gaps (deletions). Sequence names contain clone 
numbers and tissue of origin (“C” = CSF, “P” = plasma).  Compartment-specific 
consensus residues differed most frequently at position 13. 
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Individual R 

Consensus    CTRPSNNTRK GITIGPGRAF YATGDIIGNI RQAHC 
R-C01        -------S-- S--R----VI -T---VV-D- ----- 
R-C03        -------S-- S--R----VI -T---VV-D- ----- 
R-C04        -------S-- S--R----VI -T---VV-D- ----- 
R-C09        -------S-- S--R----VI -T---VV-D- ----- 
R-C13        -------S-- S--R----VI -T---VV-D- ----- 
R-P01        ---------- ---------- ---------- ----- 
R-P02        ---------- ---------- ---------- ----- 
R-P03        ---------- ---------- ---------- ----- 
R-P04        ---------- ---------- ---------- ----- 
R-P05        ---------- S--R----VI -T---VV-D- ----- 
R-P06        ---------- ---------- ---------- ----- 
R-P07        ---------- ---------- ---------- ----- 
R-P09        -------S-- S--R----VI -T---VV-D- ----- 
R-P10        -------S-- S--R----VI -T---VV-D- ----- 
R-P11        ---------- ---------- ---------- ----- 
R-P12        ---------- ---------- ---------- ----- 
R-P13        ---------- ---------- ---------- ----- 
R-P14        -------S-- S--R----VI -T---VV-D- ----- 
R-P15        ---------- ---------- ---------- ----- 35 
 

Supplementary Figure 1 (cont’d). V3 loop amino acid alignments of CSF- and plasma-
derived sequences from individuals with compartmentalized virus (A, F, H, J, M-S).  
The first sequence in each alignment is a consensus of all available clones, dashes 
represent identity, and dots symbolize gaps (deletions). Sequence names contain clone 
numbers and tissue of origin (“C” = CSF, “P” = plasma).  Compartment-specific 
consensus residues differed most frequently at position 13. 
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Individual S 

Consensus    CTRPHNNTRK SINIGPGRAF YTTGDITGNI RQAHC 
S-01C        ---------- --P------- ---------- ----- 
S-02C        ---------- --H------- ---------- ----- 
S-03C        ---------- --H----K-- ---------- ----- 
S-04C        ---------- --H------- ---------- ----- 
S-05C        ---------- --H------- ---------- ----- 
S-06C        ---------- --H----K-- ---------- ----- 
S-07C        ---------- --H----K-- ---------- ----- 
S-09C        ----R----- --H------- ---------- ----- 
S-10C        ---------- --H------- ---------- ----- 
S-11C        ---------- --H------- ---------- ----- 
S-12C        ---------- --H------- ---------- ----- 
S-14C        ---------- --P------- ---------- ----- 
S-15C        ---------- --H----K-- ---------- ----- 
S-02P        ----N----- ---------- ------V-D- ----- 
S-03P        ----N----- ---------- ------I-D- ----- 
S-04P        ----N----- ---------- ------I-D- ----- 
S-05P        ----N----- ---------- ------V-D- ----- 
S-06P        ----N----- ---------- ------V-D- ----- 
S-08P        ----N----- ---------- ------I-D- ----Y 
S-09P        ----N----- ---------- ----N-I-D- ----- 
S-11P        ----N----- ---------- ------I-D- ----- 
S-12P        ----N----- ---------- ------I-D- ----- 
S-13P        ----N----- ---------- ------V-D- ----- 
S-14P        ----N----- ---------- ------I-D- ----- 35 
 

Supplementary Figure 1 (cont’d). V3 loop amino acid alignments of CSF- and plasma-
derived sequences from individuals with compartmentalized virus (A, F, H, J, M-S).  
The first sequence in each alignment is a consensus of all available clones, dashes 
represent identity, and dots symbolize gaps (deletions). Sequence names contain clone 
numbers and tissue of origin (“C” = CSF, “P” = plasma).  Compartment-specific 
consensus residues differed most frequently at position 13.
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Chapter 6 

Genotypic and Phenotypic Differences between CSF- and Plasma-Derived HIV-1 
Nef Proteins 
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ABSTRACT 

One of the primary functions of the HIV-1 Nef protein is downregulation of 

MHC class I expression at the host cell surface, as a means of avoiding destruction by 

cytotoxic T lymphocytes (CTL).  The central nervous system (CNS) is an immune 

privileged site, and may harbor fewer CTL than peripheral tissues.  HIV replicating 

within the CNS may therefore eventually lose the ability to downregulate MHC-I, due 

to a lack of selective benefit associated with the phenotype.  We compared the 

sequences and phenotypes of Nef proteins obtained from the cerebrospinal fluid (CSF) 

and plasma of three chronically infected donors.  Nef sequences were 

compartmentalized in all three individuals based on phylogenetic evidence and 

population-level genotyping.  Nef function differed between anatomic compartments 

in one out of three donors; the extent of MHC downregulation conferred by CSF-

derived Nef variants was considerably reduced at both available sample time points.  

Our results suggest that anatomic compartmentalization leads to tissue-specific 

evolution of the nef gene, and functional differences between CNS- and plasma-

derived viral gene products may be observed in an in vitro subgenomic context. 

INTRODUCTION 

The 27 kDa HIV-1 Nef protein (Fig. 1) modulates the expression and 

trafficking of numerous host proteins within infected cells, including CD4 and major 

histocompatibility (MHC) class I and II molecules (4).  MHC class I molecules recruit 

viral antigens to the host cell surface and display them to CD8+ cytotoxic T 
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lymphocytes (CTL), which subsequently destroy the infected cell via granzyme-

mediated dissolution of the plasma membrane or Fas-mediated apoptosis (Fig. 2).  

HIV-1 downregulates the expression of MHC class I at the cell surface, thereby 

reducing the probability that the host cell will be destroyed by CD8+ cytolytic activity 

(2,5). 

The presence of HIV-1 has been detected in several anatomic sites within 

infected individuals, including brain, blood, lung, lymph nodes, spleen, and genital 

tract.  There is likely to be variation in the nature and extent of immunological 

surveillance between these tissues.  The central nervous system (CNS), for instance, is 

an immune privileged site due to the selective permeability of the blood-brain barrier, 

and is believed to contain fewer circulating lymphocytes than peripheral tissues (10).  

Therefore, the selective benefit of MHC class I downregulation to HIV-1 replicative 

fitness may be minimal or nonexistent within the CNS.  A loss of selective benefit is 

likely to result in loss of phenotype after several replicative cycles, due to the 

erosionary influence of the sloppy viral polymerase (reverse transcriptase) on the viral 

genome.  In addition, selective tradeoffs may exist between Nef functions, whereby 

another phenotype (e.g. CD4 downregulation) may be enhanced at the cost of MHC-I 

downregulation (3).  We investigated this possibility by comparing the genotypes and 

phenotypes of nef alleles associated with cerebrospinal fluid- and blood plasma-

derived viruses from three chronically infected donors.  Phenotypes were compared 

using a high-throughput assay involving linear PCR-assembled subgenomic 
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expression constructs, recently used by Ali, Pillai, Ng et al to evaluate the selective 

benefits of Nef-induced MHC-I donwregulation in an in vitro setting (2).  

MATERIALS AND METHODS 

Subjects, specimen processing, and nucleotide sequencing. Patient cohort 

selection criteria, specimen processing, sequencing methods, and viral load 

quantitation have previously been described in full (14).  CSF and blood samples from 

a total of three individuals, hereby referred to as “A”, “B”, and “C” were involved in 

this study.  Clonal sequencing was performed on virus obtained from individuals A 

and B, and population (bulk) sequencing was performed on virus from individual C. 

Phylogenetic reconstruction. Initial multiple sequence alignments were 

generated by using Multalin (6), with default gap parameters and the DNA 5-0 

substitution matrix. Subsequent manual aligning was performed by using the Se-Al 

sequence alignment editor (12).  A phylogenetic tree describing sequences from 

individuals A and B was constructed by implementing dnadist and neighbor within the 

PHYLIP version 3.5c software package (7), using the F84 model, gamma distributed 

rates across sites, and a transition/transversion ratio of 2.0. Trees were viewed with 

TreeView X (11).  

Evaluation of MHC class I downregulation. Expression vectors expressing 

Nef variants were constructed using the TAP Express Fragment System (Gene 

Therapy Systems, San Diego, CA) according to the manufacturer’s protocol.  Two-

step recombinant PCR was used to link the nef alleles from the limiting dilution 

sequencing reactions to CMV promoter and terminator sequences (Fig. 3).  Primer 
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sequences (TAP custom oligos) for the first step were as follows: TapNef-L (5') 

CTgCAggCACCgTCgTCgACTTAACAACCTABAAgAATAAgACAg and TapNef-

R (3') CATCAATgTATCTTATCATgTCTgACCAgCggAAAgTCCCTTgTA.  These 

vectors (2 �ug each) were then colipofected (GenePORTER, Gene Therapy Systems) 

with the green fluorescence protein (GFP)-expressing vector phGFP-S65T (Clontech, 

Palo Alto, CA) into HEK-293 cells.  MHC-I expression was determined by flow 

cytometric analysis of GFP-expressing cells 48 h after lipofection using a pan MHC 

class I (A, B, and C) antibody (Pharmingen, San Diego, CA).  All experiments were 

performed in duplicate.  Downregulation of MHC-I by wildtype NL4-3 was calculated 

by comparison to a nef negative control containing two premature stop codons.  

Downregulation by CSF- and blood-derived Nef variants was normalized against 

NL4-3 phenotype and reported as percentage of wildtype activity (Fig. 4).  

Accession numbers. Genbank accession numbers for the 18 sequences 

involved in this analysis will be reported upon submission and acceptance of this 

manuscript. 

RESULTS AND DISCUSSION 

A total of sixteen clonal sequences were generated representing CSF- and 

plasma-derived nef sequences from individuals A and B (4 clones per sample tissue).  

Phylogenetic analysis of these data revealed that nef sequences were 

compartmentalized; tissue-specific populations formed distinct, independent clusters 

(Fig. 5).  We then generated population sequences representing CSF and plasma virus 

from individual C, using two paired CSF and plasma samples isolated in June, 1995 
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and June, 2000.  Individual C was chosen based on the availability of longitudinal 

samples and clinical characteristics that reflected a selective environment in which Nef 

phenotype was likely to evolve (3).  CSF viral load was relatively high (approaching 

50,000 copies/ml) at the first time point, suggesting that virus was actively replicating 

within the CNS.  More importantly, CD4+ T cell numbers dropped from 753 cells/ml 

at the initial sample time to 68 at the second (Table 1).  AIDS is defined by a CD4+ 

measurement of <200 cells/ml (8).  The near lack of immune surveillance surrounding 

the second sample time would likely select for Nef functions that directly accelerate 

replication kinetics (e.g. CD4 downregulation, enhancement of infectivity) at the cost 

of MHC-I downregulation (3).  This sample set would allow us to investigate the 

effects of both anatomic compartmentalization and temporal variation in host immune 

function on viral evolution.  Nef sequences from individual C did in fact demonstrate 

considerable variation between tissues and between sample times (Fig. 6).  A few of 

the mutations distinguishing CSF and plasma viruses were immediately adjacent to 

sequence domains governing MHC class I downregulation, suggestive of phenotypic 

differences.  The twin arginines at positions 21 and 22 of the plasma Nef consensus 

sequence were substituted with lysines in the CSF consensus.  The methionine at 

position 20 is critical for MHC class I downregulation, based on mutagenesis 

experiments performed by Akari et al (1).  In addition, the glutamine at position 82 of 

the plasma sequence was replaced with lysine in the CSF-derived sequence.  Position 

82 is a few residues downstream of the polyproline region (“PxxP” domain), which is 

involved in class I downregulation as well (13).  It is worth mentioning that in both of 
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these cases, it is the CSF-derived sequence rather than the plasma variant that contains 

the same residues as the subtype B consensus sequence.  

We benchmarked our flow cytometry-based MHC-I expression assay by 

characterizing canonical Nef mutants with previously established phenotypes prior to 

evaluating variants from individuals A-C (13).  Constructs expressing three mutants, 

“LL/AA”, “PxxP”, and “Delta 62-68” were transfected into 293 (human embryonic 

kidney) cells, and surface expression of class I was determined 48 hours post 

transfection via flow cytometry.  Results in Table 2 indicate that our assay produced 

results that were in alignment with earlier reports, and that our subgenomic Nef 

expression system was a reliable proxy for Nef phenotype observed within the context 

of the whole viral genome. 

We next measured the extent of class I downregulation conferred by Nef 

variants from CSF and plasma of individuals A-C.  All of the Nef variants from 

individuals A and B failed to show any significant variation in function, ranging from 

95 to 102% of NL4-3 phenotype.  CSF variants from individual C, however, exhibited 

10% attenuation in phenotype with respect to contemporaneous plasma samples.  

Although this dynamic range is comparable to the observed phenotypic differences 

between rapid progressor and non-progressor alleles catalogued by Carl et al (3), it is 

difficult to assess the true significance of this discrepancy.  The extent to which 

natural selection can act on each Nef function independently is unknown.  

Longitudinal variation in either tissue was negligible, dropping from 84% to 81% of 

wildtype and 95% to 91% of wildtype in CSF and plasma, respectively  (Table 3).  
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Our results demonstrate that compartmentalization of HIV-1 within the central 

nervous system may select for mutations within the Nef sequence that optimize its 

function for viral replication in the local fitness landscape.  Although sequences were 

compartmentalized in the cases of individuals A and B, no significant differences were 

observed with respect to class I downregulation phenotype.  The differences in 

sequence may affect one or more of Nef’s countless other phenotypes, or perhaps may 

simply be attributed to genetic drift resulting from replicative isolation.  A third 

possibility exists as well; although it is convenient for laboratory manipulation for a 

multitude of reasons, the HEK-293 cell is not always a reliable facsimile of a 

legitimate primary human host cell.  Le Gall et al have reported that there are features 

associated with the MHC class I recycling machinery that differ substantially between 

lymphocytes and non-lymphocytes (9).  Our assay, therefore, may not be sensitive to 

phenotypic changes that would be observable in a cell type that more closely 

resembled a natural target cell.  We have devised two additional versions of this assay 

that measure phenotype within the Jurkat T cell line (Supplementary Fig. 1) and 

within freshly isolated, non-activated CD4+ peripheral blood mononuclear cells 

(Supplementary Fig. 2).  It remains to be seen if future application of these more 

physiologically relevant systems will yield results that conflict with what we have 

reported here. 

The data associated with individual C are quite provocative.  The attenuation 

of class I phenotype in CSF-derived virus fits in nicely with the paradigm that immune 

surveillance is reduced in the CNS, and moreover, that HIV-1 adapts specifically to 
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microenvironments and anatomic compartments within the human body.  The 

observed longitudinal trend (attenuation of phenotype in both compartments over 

time) is in alignment with the recorded drop in CD4+ cell counts over the sample 

period; the collapse of immune function within the host would neutralize the selective 

consequence of MHC class I downregulation (3,5).  However, the longitudinal 

attenuation (4-5%) is minimal, and barely exceeds the noise in our assay system.  This 

relative preservation of class I downregulation activity by Nef variants in both tissue 

compartments across the five-year sample period is in conflict with the longitudinal 

modulation in phenotype during the progression to AIDS observed by Carl and 

colleagues (3).  Our data suggest that selective pressure from CD8+ cytolytic activity 

may persist despite low CD4+ counts, and moreover, Nef functions may not be 

entirely distinct and separable at the sequence level. 

Virus from several additional individuals must be sampled to determine if there 

are any statistically significant patterns associated with HIV-1 Nef evolution within 

the central nervous system.  For now, we have provided an initial glimpse at this 

phenomenon, demonstrating that CNS compartmentalization may result in tissue-

specific Nef genotypic and phenotypic characteristics. 
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FIGURES AND TABLES 

 

 

 

Table 1: Individual C: CD4+ T cell counts and compartment-specific viral load 
estimates at sample isolation dates. 

 

sample date CD4+ count 
plasma VL 
(copies/ml) 

CSF VL 
(copies/ml) disease stage 

Jun-95 753 20716 46080 asymptomatic 
Jun-00 68 237720 1711 AIDS 
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Table 2: Benchmarking of MHC class I downregulation assay using canonical Nef 
mutants with previously determined phenotypes (11).     

 

Nef variant previously reported phenotype 
TAP-Nef results  

(% of WT downregulation) 
LL/AA similar to wildtype 90% 

PxxP partially impaired  81% 

delta 62-68 significantly impaired 45% 
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Table 3: Individual C: extent of MHC class I downregulation by CSF- and plasma-
derived Nef variants at two time points  (% of wildtype activity) 
 

sample date plasma phenotype CSF phenotype 
Jun-95 95% 84% 
Jun-00 91% 81% 
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Figure 1: Structure of HIV-1 Nef protein (starting at W57) 

QuickTime™ and a
GIF decompressor

are needed to see this picture.
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Figure 2: Schematic of the MHC class I antigen presentation pathway and induction of 
cytolytic activity by CD8+ T cells (CTL) resulting from the processing and display of 
HIV peptides (adapted from Janeway et al, 2001). 
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Figure 3: Breakdown of TAP (Transcriptionally Active PCR fragment) expression 
system (courtesy of Gene Therapy Systems, inc.). 
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Figure 4: Flow cytometric analysis of MHC class I expression in 293 cells transfected 
with a GFP co-transfection marker and (a) mock DNA control, (b) a conventional 
CMV-driven plasmid (pEBB) expressing Nef, and (c) TAP-Nef.  X-axis represents 
GFP expression, Y-axis represents MHC class I expression. 
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Figure 5: Maximum likelihood phylogeny of nef sequences from individuals A and B.  
Red circles = individual A and green circles = individual B.  Open circles represent 
CSF sequences, and closed circles indicate plasma-derived sequences.  HXB2 strain 
included as outgroup. Scale bar equals 10% genetic distance.
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Figure 6: Nef subregions showing discordant mutations between CSF- and plasma-
derived population sequences from individual C.  Date of tissue collection indicated at 
left and Nef position number indicated on top of each chart. 
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Supplementary Figure 1: HIV-1 NL4-3 Nef-induced downregulation of MHC class I 
in PMA-activated Jurkat E6.1 T cells.  (a) 10 ug mock DNA vector control, (b) 10 ug 
pCI-NL Nef-expressing (CMV-driven) plasmid. Cells were transfected using the 
Amaxa “nucleofection” method at the determined optimal density of 3*105 cells/ml.

a 

b 



   

 

174

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 2: HIV-1 NL4-3 Nef-induced downregulation of MHC class I 
in primary non-activated CD4+ T cells.  (a) 5 ug mock DNA vector control, (b) 5 ug 
pCI-NL Nef-expressing (CMV-driven) plasmid.  In brief, PBMC’s were extracted 
from whole blood using the Ficoll separation technique, then CD4+ cells were isolated 
via negative selection using the “RosetteSep” antibody cocktail.  Cells were 
transfected immediately after isolation using the Amaxa “nucleofection” method. 

a 

b 
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Chapter 7 

Conclusions and Future Directions 
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SUMMARY 

In this dissertation I have used a combination of computational and 

experimental tools to systematically compare sequences of HIV-1 derived from 

several anatomic sites within the human body.  My data support the theory that distinct 

viral genetic and evolutionary characteristics are associated with anatomic 

compartment-specific HIV-1 populations. 

My analysis of HIV-1 V3 sequences in Chapter 2 revealed that information 

regarding chemokine receptor preference (CCR5 vs. CXCR4) was spread throughout 

the V3 sequence, conflicting with the pre-existing dogma that only 2 sequence 

positions governed this phenotype.  This insight resulted in the development a novel, 

machine learning-based coreceptor usage prediction algorithm that is available for 

public use at: http://genomiac2.ucsd.edu:8080/wetcat/tropism.html.  Since the 

publication of Chapter 2, two different articles have been published by other groups 

comparing coreceptor prediction algorithms (2,4).  Both articles reported that our 

prediction scheme had the highest positive predictive value (PPV) out of all available 

methods.  In addition, the work described in Chapter 3 revealed that V3 sequences 

from HIV-1 strains predicted to use the CXCR4 receptor (based on our algorithm) 

showed more evidence of positive selection than CCR5-using variants, in line with the 

concept that CXCR4-using viruses tend to be more immunogenic (1). 

Chapters 4, 5, and 6 systematically compared HIV-1 sequences derived from 

semen, blood plasma, and cerebrospinal fluid.  Tissue-specific populations typically 

clustered independently in phylogenetic reconstructions, and differed on several levels 
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including extent of genetic diversity, glycosylation patterns, intensity of positive 

selection pressure, and coreceptor usage phenotype.  Machine learning analysis of env 

sequences revealed that there may be specific signature mutations associated with 

viruses from different anatomic sites. Additionally, comparison of CSF- and plasma-

derived HIV-1 nef sequences demonstrated that phenotypic discrepancies between 

tissue-specific viral proteins may be observed in a reductionist in vitro setting. Taken 

together, these results strongly suggest that immunological surveillance and target cell 

characteristics differ between the central nervous system, male genital tract, and 

peripheral tissues, and these differences select for divergent locally adapted HIV-1 

populations.   

FUTURE DIRECTIONS 

The work described in Chapter 5 of this dissertation suggested that certain 

mutations may be overrepresented in central nervous system (CNS)-derived HIV-1 

strains.  The selective advantage of these mutations within the CNS environment has 

not been determined as yet, due to a lack of appropriate experimental systems.  Trillo-

Pazos et al have recently developed a three-dimensional in vitro model of the human 

brain, by culturing human fetal brain tissue on Noble agar-coated plates in Dulbecco’s 

modified Eagle’s serum and 5% human serum for 4 weeks (5).  This in vitro model 

has been employed to evaluate the neuropathogenic consequences of HIV-1 infection, 

and to determine how effectively nucleoside reverse transcriptase inhibitors suppress 

HIV-1 replication in human brain tissue (3,5).  These studies demonstrate that the fetal 

brain aggregate, or “neurosphere” is in fact permissive to HIV-1 infection, based on 
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measurements of p24 (capsid protein) in culture supernatants and detection of 

integrated viral DNA in homogenized tissue.  I propose using the neurosphere model 

to investigate the effects of HIV-1 sequence variation on replicative fitness within the 

CNS environment.  My plan consists of five main stages: 

1) Inoculate fetal brain aggregates with CCR5- and CXCR4-tropic laboratory-

adapted HIV-1 strains at several concentrations to determine the optimal 

infection model (highest peak p24 production). 

2) Mutagenize the fittest lab strain at positions in env that appear to be correlated 

with HIV-1 neurotropism.   

3) Compare the replication kinetics of wildtype and mutagenized viruses in the 

brain aggregate model.  The superior performance of mutagenized strains 

would be a clear demonstration of the selective benefit associated with the 

CNS-specific env mutations. 

4) Use existing viral entry assays to determine if the improved replicative fitness 

of mutagenized strains can be attributed to enhanced viral entry. 

5) Histochemically analyze infected brain aggregates to characterize variation in 

neuropathogenesis resulting from HIV-1 sequence variation. 

We have generated preliminary data regarding stage 1 of this plan.  Fetal brain 

aggregates were infected with the CXCR4-tropic strain NL4-3 and “NL-BAL”, a 

mutant version of NL4-3 containing the CCR5-using env gene sequence derived from 

the macrophage-tropic HIV-1 “BAL” strain (Fig. 1).  There was no convincing 

evidence of viral replication at any of the tested inoculum concentrations and 
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adsorption times.  Although p24 values did reach detectable levels within 3 days post-

infection in most treatments, the levels were not high or sustained enough to exclude 

the possibility that released input virus was being measured instead of de novo 

produced virus (Fig. 2).    

Microglial cells are believed to be the principal target of HIV-1 in the CNS.  

An average fetal brain aggregate consists of approximately 500,000 cells, 2-3% of 

which are microglia.  It is hard to imagine that 10,000 sparsely distributed target cells 

would provide sufficient fuel to propagate HIV-1 infection.  The administration of 

GM-CSF (granulocyte macrophage colony stimulating factor) to forming aggregates 

reportedly increases microglial cell composition to 10-15% (5), increasing the 

likelihood of a spreading infection.  For our second trial, we inoculated GM-CSF-

treated aggregates with NL4-3 and NL-BAL.  GM-CSF had no apparent effect on p24 

production.  Once again, we were not able to reject the possibility that input virus 

rather than produced virus was being detected (Fig. 3). 

To confirm our suspicions that input virus was being detected in p24 assays, 

brain aggregates were infected with two different strains of HIV-1 containing GFP 

reporter sequences, “NL-EGFP” and “NL-CSF-GFP”.  NL-EGFP is a mutant version 

of NL4-3 containing an internal ribosomal entry site (IRES) and GFP sequence 

adjacent to the nef reading frame.  NL-CSF-GFP is a variant of NL-EGFP containing 

the CCR5-tropic env gene from the CSF-derived primary isolate JR-CSF.  The 

advantage associated with these reporter viruses is that infection can be monitored via 

flow cytometry.  The number of cells expressing GFP is a direct indication of the 
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number of infected cells.  In addition, the presence of residual input virus in the brain 

aggregate is of no consequence; only viruses that productively infect host cells will 

generate GFP.  Our results did in fact confirm our suspicions; neither strain (at any of 

the tested inoculum concentrations) showed any detectable expression of GFP in the 

fetal brain aggregate model (Fig. 4).  

An in vitro model of the brain would certainly be invaluable for studying the 

effects of HIV-1 sequence variation on neurotropism and neurovirulence.  However, 

we have not been able to productively infect fetal brain aggregates as yet.  Further 

manipulation of this model system will be necessary to make it a viable option for my 

proposed studies.  

CONCLUSIONS 

As I mentioned in Chapter 1 of this dissertation, the influence of anatomic 

compartmentalization on HIV-1 evolution has significant consequences in the clinical 

world.  Several tissues (e.g. the brain) are relatively inaccessible to drugs and act as 

viral sanctuary sites, compromising antiretroviral therapy.  The presence of HIV-1 

within the central nervous system results in debilitating neurological disorders in up to 

50% of untreated patients.  Certain cell types  (e.g. macrophages) are more long-lived 

than others, and enable HIV to establish latent infection that results in indefinite viral 

persistence.  Virus residing in the genital tracts of infected individuals ultimately 

drives the AIDS epidemic, since HIV-1 is spread predominantly via genital secretions.  

Understanding how HIV-1 sequence variation correlates with tissue tropism should 

help considerably in the clinical management of HIV disease and in the prevention of 
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its transmission.  The data presented within this dissertation reinforce the notion that 

distinct viral genetic and evolutionary characteristics are associated with anatomic 

compartment-specific HIV-1 populations.  The ultimate goal of these studies is to 

translate information on intrapatient viral genetic variation into effective 

pharmacological agents and prophylactic intervention schemes.  Many, many 

nucleotides, computer bytes, and pipet tips lie on the long road ahead. 
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FIGURES AND TABLES 

 

 

 

 

 

Figure 1: Genome map of the HIV-1 “NL-BaL” strain, which contains the R5, 
macrophage-tropic BaL env gene in place of the original X4 NL4-3 sequence.    
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Figure 2: p24 values (pg/ml) in brain aggregate culture supernatants measured at 
three-day intervals.  Input virus washed off at either 8 or 24 hours post infection. 
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Figure 2 (cont’d): p24 values (pg/ml) in brain aggregate culture supernatants measured 
at three-day intervals.  Input virus washed off at either 8 or 24 hours post infection. 
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ROUND 2: p24's, 10,000 pg/ml inoculum
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Figure 3: p24 values (pg/ml) in brain aggregate culture supernatants measured at 
three-day intervals.  Input virus washed off 8 hours post infection.    
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Figure 4: Example of flow cytometric analysis of GFP expression by a CCR5-tropic 
HIV strain containing a GFP reporter (NL-CSF-EGFP). (a) uninfected “P4R5” cells 
(HeLa cell line stably transfected with CD4 and CCR5), (b) P4R5 cells 3 days after 
infection with 100,000 pg/ml NL-CSF-GFP, (c) uninfected homogenized brain 
aggregate, (d) homogenized brain aggregate 3 days after infection with 100,000 pg/ml 
NL-CSF-GFP.  P4R5’s show marked increase in GFP expression, while brain 
aggregates show no detectable difference.   


